Nav: Home

More stable qubits in perfectly normal silicon

October 04, 2016

The power of future quantum computers stems from the use of qubits, or quantum bits, which do not have to be either 0 or 1, but can also be 0 and 1 at the same time. It is not yet clear on which technology these qubits in quantum computers will be based, but qubits based on electron spins are looking more and more promising. It was thought that these could only be produced in the expensive semiconductor material gallium arsenide, but researchers have now discovered that the more common material silicon, the basic material of modern computer chips, is even better. Researchers from Delft, the University of Wisconsin and Ames Laboratory, led by Prof. Lieven Vandersypen of TU Delft's QuTech discovered that the stability of qubits could be maintained 100 times more effectively in silicon than in gallium arsenide. They publishing their research in PNAS this week.

Fragile

Because qubits can be both 1 and 0 simultaneously, a quantum computer will be able to tackle computing problems that are out of reach of the current supercomputers. The main issue for researchers is that this superposition is very fragile. 'Two numbers are very important for qubits,' explains research leader Lieven Vandersypen. 'The length of time the superposition can be maintained before it spontaneously reverts to 1 or 0 is critical for an effectively functioning quantum computer. In gallium arsenide, this is about 10 nanoseconds, but in silicon we have achieved a factor of 100 longer. Using smart technologies we were able to stretch this to 0.4 milliseconds. Although a coherence time of 0.4 milliseconds may not sound very long, for a computer it is nearly an eternity. Moreover, the gate fidelity in silicon is 10-100 times better. The gate fidelity is the measure of whether an operation you perform on a qubit will actually work.'

Silicon

The researchers used 'standard' silicon, an extremely cheap material of which there is an almost infinite supply: it is the main ingredient of sand. Earlier research by the University of New South Wales in Australia demonstrated that isotopically purified silicon-28 can produce even better results. "Silicon naturally contains three isotopes, including the common form Si-28, and the less common form with atomic number 29. The latter form has been proven to degrade the coherence and gate fidelity considerably. Researchers believe that replacing gallium arsenide with silicon will be extremely important for the design of the quantum computer. The required technology for fabricating nanostructures in silicon has already reached an advanced stage in chip technology, and now, as the researchers hoped, silicon also proves to be a better qubit material.

Scaling up

Researchers of TU Delft are collaborating intensively with other researchers, among others from Intel Corporation, who joined a partnership with QuTech last year. The greatest challenge for quantum technologists now is to scale up the various qubits for use in circuits of multiple interplaying qubits. 'At least hundreds of qubits - and preferably many more - will need to work together to make a working quantum computer,' says Vandersypen.
-end-
The research published in PNAS was supported by the Dutch Organization for Fundamental Research on Matter (FOM)

Delft University of Technology

Related Quantum Computers Articles:

Study takes step toward mass-producible quantum computers
Study takes step toward mass-producible quantum computers.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Refrigerator for quantum computers discovered
Researchers at Aalto University have invented a quantum-circuit refrigerator, which can reduce errors in quantum computing.
New quantum liquid crystals may play role in future of computers
First 3-D quantum liquid crystals may have applications in quantum computing.
'Virtual' interferometers may overcome scale issues for optical quantum computers
A team of researchers from RMIT, the University of Sydney and UTS have devised an entirely new way of implementing large-scale interferometers that will dramatically miniaturize optical processing circuitry.
Further improvement of qubit lifetime for quantum computers
An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits.
Construction of practical quantum computers radically simplified
Scientists at the University of Sussex have invented a ground-breaking new method that puts the construction of large-scale quantum computers within reach of current technology.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
A new class of materials could realize quantum computers
Scientists at EPFL and PSI have discovered a new class of materials that can prove ideal for the implementation of spintronics.
New 3-D wiring technique brings scalable quantum computers closer to reality
Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

Related Quantum Computers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".