Nav: Home

Nanotechnology for energy materials: Electrodes like leaf veins

October 04, 2016

An international team headed by HZB scientist Prof. Michael Giersig has recently demonstrated for these applications that networks of metallic mesh possessing fractal-like nano-features surpass other metallic networks in utility. These findings have now been published in the most recent edition of the renowned journal Nature Communications.

Their new development is based on what is termed quasi-fractal nano-features. These structures have similarities to the hierarchical networks of veins in leaves. Giersig's team was able to show that metallic networks with these features optimise performance of electrodes for several applications. They combine minimized surface coverage with ultra-low total resistance while maintaining uniform current density. In addition, it was demonstrated that these networks, inspired by nature, can surpass the performance of conventional indium tin oxide (ITO) layers. In experiments on artificially constructed electrode networks of different topologies, the scientists established that non-periodic hierarchical organisation exhibited lower resistance as well as excellent optical transmittance in comparison to periodic organisation. This led to elevated output power for photovoltaic components.

"On the basis of our studies, we were able to develop an economical transparent metal electrode", says Giersig, continuing "We obtain this by integrating two silver networks. One silver network is applied with a broad mesh spacing between the micron-diameter main conductors that serve as the "highway" for electrons transporting electrical current over macroscopic distances." Next to it, additional randomly distributed nano-wire networks serve as local conductors to cover the surface between the large mesh elements. "These smaller networks act as regional roadways beside the highways to randomise the directions and strengths of the local currents, and also create refraction effects to improve transparency above that of classical shadow-limited performance", according to Giersig. "Solar cells based upon these electrodes show exceptional a high efficiencies".
-end-
Publication: Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics; Nature Communications, 7, 12825; doi:10.1038/ncomms12825

Helmholtz-Zentrum Berlin für Materialien und Energie

Related Electrodes Articles:

New electrodes could increase efficiency of electric vehicles and aircraft
The rise in popularity of electric vehicles and aircraft presents the possibility of moving away from fossil fuels toward a more sustainable future.
Li-ion battery components to be printed on an inkjet printer
Scientists from Peter the Great St. Petersburg Polytechnic University (SPbPU) are developing a technology for printing the electrodes for miniature li-ion batteries by an inkjet printer.
Ionic channels in carbon electrodes for efficient electrochemical energy storage
Development towards high-performance electrochemical energy storage devices has evoked our effort on novel carbon electrodes, as certain nanocarbons are perceived to own advantages such as high specific surface areas and controllable structure.
Brain-computer interfaces without the mess
It sounds like science fiction: controlling electronic devices with brain waves.
Nanoparticles in lithium-sulphur batteries detected with neutron experiment
An HZB team has for the first time precisely analysed how nanoparticles of lithium sulphide and sulphur precipitate onto battery electrodes during the course of the charging cycle.
Leap toward robust binder-less metal phosphide electrodes for Li-ion batteries
Researchers at the Toyohashi University of Technology have successfully fabricated a binder-less tin phosphide (Sn4P3)/carbon (C) composite film electrode for lithium-ion batteries via aerosol deposition.
Review on the synthesis and anti-oxidation of copper nanowires for transparent conductive electrodes
In a paper to be published in the forthcoming issue in NANO, a team of researchers have reviewed the methods of synthesizing copper nanowires (Cu NWs) and techniques to improve its oxidation resistance.
Through thick and thin: Neutrons track lithium ions in battery electrodes
Lithium-ion batteries are expected to have a global market value of $47 billion by 2023, but their use in heavy-duty applications such as electric vehicles is limited due to factors such as lengthy charge and discharge cycles.
Expanding the use of silicon in batteries, by preventing electrodes from expanding
Silicon anodes are generally viewed as the next development in lithium-ion battery technology.
Application of nanosized LiFePO4 modified electrode to electrochemical sensor & biosensor
The aim of this paper was to construct nanosized LFP modified electrodes, which could be applied as working electrode for rutin analysis and as an electrochemical biosensor for direct electrochemistry of Hemoglobin (Hb).
More Electrodes News and Electrodes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab