Nav: Home

Nanotechnology for energy materials: Electrodes like leaf veins

October 04, 2016

An international team headed by HZB scientist Prof. Michael Giersig has recently demonstrated for these applications that networks of metallic mesh possessing fractal-like nano-features surpass other metallic networks in utility. These findings have now been published in the most recent edition of the renowned journal Nature Communications.

Their new development is based on what is termed quasi-fractal nano-features. These structures have similarities to the hierarchical networks of veins in leaves. Giersig's team was able to show that metallic networks with these features optimise performance of electrodes for several applications. They combine minimized surface coverage with ultra-low total resistance while maintaining uniform current density. In addition, it was demonstrated that these networks, inspired by nature, can surpass the performance of conventional indium tin oxide (ITO) layers. In experiments on artificially constructed electrode networks of different topologies, the scientists established that non-periodic hierarchical organisation exhibited lower resistance as well as excellent optical transmittance in comparison to periodic organisation. This led to elevated output power for photovoltaic components.

"On the basis of our studies, we were able to develop an economical transparent metal electrode", says Giersig, continuing "We obtain this by integrating two silver networks. One silver network is applied with a broad mesh spacing between the micron-diameter main conductors that serve as the "highway" for electrons transporting electrical current over macroscopic distances." Next to it, additional randomly distributed nano-wire networks serve as local conductors to cover the surface between the large mesh elements. "These smaller networks act as regional roadways beside the highways to randomise the directions and strengths of the local currents, and also create refraction effects to improve transparency above that of classical shadow-limited performance", according to Giersig. "Solar cells based upon these electrodes show exceptional a high efficiencies".
-end-
Publication: Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics; Nature Communications, 7, 12825; doi:10.1038/ncomms12825

Helmholtz-Zentrum Berlin für Materialien und Energie

Related Electrodes Articles:

Fixation of powder catalysts on electrodes
Chemists at Ruhr-Universität Bochum have developed a new method to tightly fix catalyst powders on electrode surfaces.
Bacteria-coated nanofiber electrodes clean pollutants in wastewater
Cornell University researchers may have created an innovative, cost-competitive electrode material for cleaning pollutants in wastewater.
Researchers flip the script on magnetocapacitance
The study demonstrates for the first time a new type of magnetocapacitance, a phenomenon that could be useful in the next generation of 'spintronic' devices.
Self-healing catalyst films for hydrogen production
Chemists at the Centre for Electrochemical Sciences at Ruhr-Universität Bochum have developed a catalyst with self-healing properties.
Is this the 'holey' grail of batteries?
In a battery system, electrodes containing porous graphene scaffolding offer a substantial improvement in both the retention and transport of energy, a new study reveals.
Exploring the conversion of heat to electricity in single molecules
Researchers at Osaka University investigated the influence of the geometry of single-molecule devices on their ability to produce electricity from heat.
Graphene and gold make a better brain probe
A team from Korea created more flexible neural electrodes that minimize tissue damage and still transmit clear brain signals.
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Joint efforts towards treating paralysis
EPFL scientists Stéphanie Lacour and Grégoire Courtine report on the status of their research and share their vision about the future of wearable neuroprosthetics at this year's edition of South by South West in Austin, Texas, on March 12th.
Novel plasma jet offshoot phenomenon explains blue atmospheric jets
Physicists working with plasma jets, made of a stream of ionised matter, have discovered a new phenomenon.

Related Electrodes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...