Nav: Home

Louisiana Tech University professor develops new mechanism for strengthening materials

October 04, 2016

RUSTON, La. - Dr. Kasra Momeni, assistant professor of mechanical engineering and director of the Advanced Hierarchical Materials by Design Lab at Louisiana Tech University, has discovered a new mechanism for strengthening nanomaterials and tailoring their properties to build superior structures.

Momeni, in collaboration with researchers from Wright State University and the University of Göttingen in Germany, have revealed a new path for engineering nanomaterials and tailoring their characteristics. This additional dimension added to the material design opens new doors to build superior materials by engineering their atomic structure. The proposed approach can also be used to adjust the chemistry of the material, which is of importance for designing new catalytic materials enhancing the chemical processes.

"Stacking faults in nanomaterials drastically change the stress distribution, as the long-range stress fields interact with the boundaries in these materials," said Momeni. "The complex nature of the stresses formed in nanowires, as a result of superposition of the stress fields from surface relaxation and reconstruction as well as the stacking fault stress fields, changes the failure mechanism of the nanowires."

Atomistic simulations indicate that the presence of stacking faults results in an inhomogeneous stress distribution within the nanowires due to the change in the sign of stress fields on the two sides of stacking faults (i.e. compressive stress on one side and tensile stress on the other side). This inhomogeneous stress field results in a nonsymmetrical mechanical response of the nanowires under tensile and compressive loadings. The defected nanowires with diameters smaller than 1.8nm and a single stacking fault, surprisingly, have higher a yield stress compared to their counterparts with perfect structures.

"This surprising behavior is due to the interaction between the stress fields of stacking faults with the stress field of relaxed and reconstructed surfaces in thin nanowires," Momeni said. "We expect similar results in other 1D nanomaterials with stacking faults, where inhomogeneous stresses form. The developed atomistic model paves the way to study the effect of different stacking fault distributions and engineering defects to tailor material properties."

"Dr. Momeni arrived at Louisiana Tech this past August and has hit the ground running," said Dr. David Hall, director of civil engineering, construction engineering technology and mechanical engineering at Louisiana Tech. "His discovery of a method to strengthen materials through the interaction of atomic-level material features is a significant and fundamental contribution in computational mechanics.

"Dr. Momeni is at the cutting edge of a new research area that uses supercomputing to understand and design new materials, and we are thrilled to have him on our faculty."

Momeni has had research published in prestigious journals such as Nano Letters, Nano Energy, and Scientific Reports, and has received significant attention.

Louisiana Tech University

Related Nanowires Articles:

Nanowires, the future of electronics
The current demand for small-sized electronic devices is calling for fresh approaches in their design.
Improving silver nanowires for FTCEs with flash light interactions
A Korean research team led by Professor Keon Jae Lee of the Materials Science and Engineering Department at KAIST and Dr.
UC researchers use gold coating to control luminescence of nanowires
In electronics, the race for smaller is huge. Physicists at the University of Cincinnati are working to harness the power of nanowires, microscopic wires that have the potential to improve solar cells or revolutionize fiber optics.
Obtaining of silicon nanowires becomes eco-friendly
Scientists from the Faculty of Physics, the Lomonosov Moscow State University have devised a technique of silicon nanowires synthesis.
Nanowires as sensors in new type of atomic force microscope
A new type of atomic force microscope (AFM) uses nanowires as tiny sensors.
Tiny crystals and nanowires could join forces to split water
Scientists are pursuing a tiny solution for harnessing one of the world's most abundant sources of clean energy: water.
A versatile method to pattern functionalized nanowires
A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices.
Newly discovered organic nanowires leave manmade technologies in their dust
A microbial protein fiber discovered by a Michigan State University scientist transports charges at rates high enough to be applied in manmade nanotechnologies.
New research shows how nanowires can be formed
In an article published in Nature today, researchers at Lund University in Sweden show how different arrangements of atoms can be combined into nanowires as they grow.
New type of nanowires, built with natural gas heating
A new simple, cost-effective approach that may open up an effective way to make other metallic/semiconducting nanomaterials.

Related Nanowires Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".