Nav: Home

Direct utilization of elemental sulfur for microporous polymer synthesis

October 04, 2016

Daejeon, Republic of Korea, October 4, 2016--Methane, a primary component of natural gas, has emerged recently as an important energy source, largely owing to its abundance and relatively clean nature compared with other fossil fuels. In order to use natural gas as a fuel, however, it must undergo a procedure called "hydrodesulfurization" or "natural gas sweetening" to reduce sulfur-dioxide emissions from combustion of fossil fuels. This process leads to excessive and involuntary production of elemental sulfur. Although sulfur is one of the world's most versatile and common elements, it has relatively few large-scale applications, mostly for gunpowder and sulfuric acid production.

Thus, the development of synthetic and processing methods to convert sulfur into useful chemicals remains a challenge. A research team led by Professor Ali Coskun from the Graduate School of EEWS (Energy, Environment, Water and Sustainability) at Korea Advanced Institute of Science and Technology (KAIST) has recently introduced a new approach to resolving this problem by employing elemental sulfur directly in the synthesis of microporous polymers for the process of natural-gas sweetening.

Natural gas, containing varying amounts of carbon dioxide (CO2) and hydrogen sulfide (H2S), is generally treated with amine solutions, followed by the regeneration of these solutions at increased temperatures to release captured CO2 and H2S. A two-step separation is involved in removing these gases. The amine solutions first remove H2S, and then CO2 is separated from methane (CH4) with either amine solutions or porous sorbents such as microporous polymers.

Using elemental sulfur and organic linkers, the research team developed a solvent and catalyst-free strategy for the synthesis of ultramicroporous benzothiazole polymers (BTAPs) in quantitative yields. BTAPs were found to be highly porous and showed exceptional physiochemical stability. In-situ chemical impregnation of sulfur within the micropores increased CO2 affinity of the sorbent, while limiting diffusion of CH4. BTAPs, as low-cost, scalable solid-sorbents, showed outstanding CO2 separation ability for flue gas, as well as for natural and landfill gas conditions.

The team noted that: "Each year, millions of tons of elemental sulfur are generated as a by-product of petroleum refining and natural-gas processing, but industries and businesses lacked good ideas for using it. Our research provides a solution: the direct utilization of elemental sulfur into the synthesis of ultramicroporous polymers that can be recycled back into an efficient and sustainable process for CO2 separation. Our novel polymeric materials offer new possibilities for the application of a little-used natural resource, sulfur, to provide a sustainable solution to challenging environmental issues."
-end-
This work was published online in Chem on September 8, 2016 and also highlighted in C&EN (Chemical & Engineering News) by the American Chemical Society (ACS) on September 19, 2016. The research paper was entitled "Direct Utilization of Elemental Sulfur in the Synthesis of Microporous Polymers for Natural Gas Sweetening." (DOI: 10.1016/j.chempr.2016.08.003)

The Korea Advanced Institute of Science and Technology (KAIST)

Related Natural Gas Articles:

Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses
Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.
Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.
UT study shows how to produce natural gas while storing carbon dioxide
New research at The University of Texas at Austin shows that injecting air and carbon dioxide into methane ice deposits buried beneath the Gulf of Mexico could unlock vast natural gas energy resources while helping fight climate change by trapping the carbon dioxide underground.
Hydrogen-natural gas hydrates harvested by natural gas
A recent study has suggested a new strategy for stably storing hydrogen, using natural gas as a stabilizer.
Greener, more efficient natural gas filtration
MIT researchers have developed a new polymer membrane that can dramatically improve the efficiency of natural gas purification, while reducing its environmental impact.
Crystals that clean natural gas
A metal-organic framework that selectively removes impurities from natural gas could allow greater use of this cleaner fossil fuel.
30% of the UK's natural gas could be replaced by hydrogen, cutting carbon emissions
Almost a third of the natural gas fuelling UK homes and businesses could be replaced by hydrogen, a carbon free fuel, without requiring any changes to the nation's boilers and ovens, a pioneering study by Swansea University researchers has shown.
Study finds no evidence of natural gas from fracking in Ohio drinking water
A study of drinking water in Appalachian Ohio found no evidence of natural gas contamination from recent oil and gas drilling.
A potentially cheap, efficient and eco-friendly system for purifying natural gas
Fundamental researchers have proposed a novel two-part system for separating impurities from natural gas in the Journal of Renewable and Sustainable Energy.
More Natural Gas News and Natural Gas Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.