Nav: Home

New device detects bacteria and tests for antibiotic resistance

October 04, 2016

(Edmonton) An interdisciplinary team of engineering and pharmaceutical researchers at the University of Alberta has invented a device that can rapidly identify harmful bacteria and can determine whether it is resistant to antibiotics.

The device could save precious hours in patient care and public health, and prevent the spread of drug-resistant strains of bacteria. The team's findings are published in a paper entitled Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes in the current issue of Nature Communications.

The device was designed to look for and trap different types of bacteria, then find out which antibiotics are most effective against them.

Rather than growing bacterial cultures then testing them--a commonly used and time-consuming approach--the microscopic device relies on nano-scale technology for fast results.

The main feature of the device is a cantilever--a plank that resembles a diving board--that has a microfluidic channel 25 times smaller than the width of a hair etched on its surface. The channel is coated with biomaterials, like antibodies, that harmful bacteria like E. coli or Listeria in fluid samples stick to.

When bacteria are caught, the device sends out three different signals to researchers.

When bacteria is detected the cantilever's mass changes, and it bends, explained Thomas Thundat, a professor in the Department of Chemical and Materials Engineering and the Canada Excellence Research Chair in Oil Sands Molecular Engineering. "So this gives us two signals: the mass change and the bending action."

By shining infrared light on the bacteria, a third signal is sent, he added. If the bacterial absorbs the light it begins to vibrate, generating a minute amount of heat that sends a confirmation signal. Having three detection methods "means there is no ambiguity," Thundat said.

"By monitoring the interaction of light and bacteria, we can get highly selective detection of bacteria," said Faheem Khan, a researcher in Thundat's lab. "It's our moment of truth."

With the bacteria trapped in the cantilever, different antibiotic drugs can be added to the device. And changes in the intensity of tiny oscillations of the cantilever signal to researchers whether the bacteria are alive or dead. The researchers then know which antibiotics the bacteria are susceptible to.

"We're trying to find a way to fight bacterial resistance to drugs and prevent or at least decrease the spread of drug-resistant strains," said Hashem Etayash, a PhD student in the Faculty of Pharmacy and Pharmaceutical Sciences. "We're able to do several tests in a very short period of time and we can quickly identify bugs that can resist antibiotics."

The device can be used to test extremely small fluid samples, millions of times smaller than a rain droplet. Thundat says the size of the device is advantageous when you only want a very small sample, in settings such as a neonatal intensive care unit, or in situations where only very small samples are available.

The research was funded through the Government of Canada's Canada Excellence Research Chairs program.

The team has patented the technology and Etayash and Khan are hoping to design a hand-held prototype of the device and bring it to market.
-end-


University of Alberta

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.