Nav: Home

Curing inherited disease by running a stop sign

October 04, 2016

BIRMINGHAM, Ala. - A study published today by scientists at University of Massachusetts Medical School and the University of Alabama at Birmingham provides insight into the mechanism of action of the drug ataluren, which is showing promise in treating Duchenne muscular dystrophy and cystic fibrosis. In these and other inherited diseases, 10 to 15 percent of the single-base pair mutations that cause the disease create a misplaced, premature "stop" codon in the middle of the gene -- causing the machinery of the cell to prematurely halt synthesis of the protein, which destroys its ability to function.

Ataluren appears to persuade the machinery of the cell to "run" that stop sign and allow a functioning protein to be made.

Allan Jacobson, Ph.D., of the University of Massachusetts Medical School and co-founder of PTC Therapeutics, the company that developed ataluren, and David Bedwell, Ph.D., professor of the UAB Department of Biochemistry and Molecular Genetics, have sought to understand precisely how ataluren allows the ribosome, the machinery of cellular protein synthesis, to skip over these inserted stop signs and produce proteins that have normal or near-normal function.

The key question was this: What kind of amino acid gets inserted in place of the mutant stop sign? Is it one that is similar to the amino acid that would have been placed there in a nonmutated gene, thus making it more likely that the protein will be able to function like the original, nonmutated protein?

Or does the drug allow insertion of dissimilar amino acids that may distort the structure of a read-through protein, preventing it from normal function?

To answer this question, the researchers created numerous premature stop signs, known as nonsense mutations, in test genes in human and yeast cells. They then looked to see what amino acids were inserted when ataluren allowed a skip-over of the premature nonsense mutation.

In a paper in the Proceedings of the National Academy of Sciences, they report that ataluren acts at the ribosome, and it allows the insertion of amino acids that are similar to the ones that would have been present in the nonmutated gene. These similar amino acids are carried by what the researchers call near-cognate tRNAs. They also found that the proteins made during ataluren treatment were full-length, and that other aspects of normal protein synthesis were not disrupted.

"These results further support our clinical findings demonstrating the production of full-length functional protein in nonsense mutation Duchenne muscular dystrophy and cystic fibrosis," said Stuart W. Peltz, Ph.D., co-founder and chief executive officer of PTC Therapeutics. "Given this mechanism, ataluren offers the potential for a new therapeutic approach for multiple nonsense mutation genetic disorders by targeting the underlying cause of the disease."

"These results should enable predictions of better clinical outcomes with therapeutic nonsense suppression," the researchers write in their paper. "Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression."

"Our new data is scientifically important because ataluren restores activity to genes inactivated by nonsense mutations, and as a result, it has the potential to do so much for a large number of very complex genetic disorders," Jacobson said.
Besides Jacobson and Bedwell, authors are Bijoyita Roy, of the University of Massachusetts Medical School and PTC Therapeutics; John D. Leszyk of the University of Massachusetts Medical School; Westley J. Friesen, Yuki Tomizawa, Jin Zhuo, Briana Johnson, Jumana Dakka, Christopher R. Trotta and Ellen M. Welch, all of PTC Therapeutics; Xiaojiao Xue and Kim M. Keeling, UAB Department of Biochemistry and Molecular Genetics and the Gregory Fleming James Cystic Fibrosis Research Center; James A. Mobley, UAB Department of Surgery; and Venkateshwar Mutyam and Steven M. Rowe, Gregory Fleming James Cystic Fibrosis Research Center and the UAB Department of Medicine.

University of Alabama at Birmingham

Related Cystic Fibrosis Articles:

Cystic fibrosis alters the structure of mucus in airways
Cystic fibrosis (CF) alters the structure of mucus produced in airway passages.
Cystic fibrosis study offers new understanding of silent changes in genes
Researchers studying the root cause of cystic fibrosis have made a major advance in our understanding of silent gene changes with implications for the complexity of cystic fibrosis.
New imaging technique shows effectiveness of cystic fibrosis drug
Cystic fibrosis currently has no cure, though a drug approved by the Food and Drug Administration treats the underlying cause of the disease.
New study resolves the structure of the human protein that causes cystic fibrosis
In order to better understand how genetic mutations give rise to cystic fibrosis, researchers need to map the protein responsible for the disorder.
New molecules identified that could help in the fight to prevent cystic fibrosis
New research has identified new molecules that could help in the fight to prevent diseases caused by faulty ion channels, such as cystic fibrosis.
Newborn screening for cystic fibrosis
A new study led by a team from the Research Institute of the McGill University Health Centre and Cystic Fibrosis Canada reinforces the benefits of newborn screening for cystic fibrosis (CF) patients.
Evolving insights into cystic fibrosis lung infections
Recent research progress into how bacteria adapt and evolve during chronic lung infections in cystic fibrosis patients could lead to better treatment strategies being developed, according to a new review by the University of Liverpool.
Key hurdle overcome in the development of a drug against cystic fibrosis
In people suffering from cystic fibrosis the CFTR protein is not located in the right place in mucus-producing cells: it remains inside the cell while it should be in the cell wall.
Researchers further illuminate pathway for treatment of cystic fibrosis
By studying alveolar macrophages, which provide our airways with a crucial defense against pathogens, UNC scientists are now able to more fully understand the larger picture of CF symptoms and continue progress towards targeted treatments, aside from addressing the mutated CFTR gene.
Gene therapy: A promising candidate for cystic fibrosis treatment
An improved gene therapy treatment can cure mice with cystic fibrosis (CF).

Related Cystic Fibrosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".