Nav: Home

New method, device aimed at controlling blood pressure levels automatically

October 04, 2016

ARLINGTON, Texas - University of Texas at Arlington researchers are developing a new method and device for controlling blood pressure levels in cardiac care environments that use targeted electrical stimulation rather than drugs.

The National Institutes of Health has awarded Associate Professor Young-Tae Kim and Professor Khosrow Behbehani, both from the UTA Department of Bioengineering, and Muthu Wijesundara, division head for the biomedical division at the UTA Research Institute, a $440,670 grant for continued research of a "Closed-Loop Blood Pressure Control by Neural Stimulation for Cardiac Care Environment." In this context, having a "closed loop" translates into automatically maintaining blood pressure levels.

Blood pressure modulation in a cardiac care environment such as in hypertensive emergencies have seen significant improvements due to the availability of antihypertensive drugs. Still, patients suffer varying side effects of these drugs including: fatigue, severe headaches, hypotension, dizziness, respiratory difficulty and edema.

Everyone responds differently to these drugs and doctors are only supplied with a narrow acceptable range for dosages of antihypertensive drugs for a patient. However, doctors must aggressively reduce blood pressure during a hypertensive crisis, without overshooting and causing dangerously low blood pressure.

The project has two major goals.

The first goal is to establish a refined process of stimulation to the sciatic nerve or its branches for optimally controlling blood pressure by fine-tuning the electrical stimulation parameters. To do this, a series of tests will produce data indicating the most effective and precise methods for electrically controlling blood pressure. This will develop a useful treatment strategy without the use of drug therapy.

"In order to safely and precisely modulate blood pressure for patients during a perioperative cardiac procedure or hypertensive emergency, we have developed the implantable/removable Flex μCEA, or Flexible Micro-Channel Electrode Array," Kim said. "The Flex μCEA is an interface allowing for electric stimulation for neuromodulation at specific nerves to reliably control the neuronal activities that reduce blood pressure while minimizing unwanted side effects."

The second goal is to develop a closed-loop system which can automatically control blood pressure. This system will use real-time blood pressure measurements from an implantable catheter within the blood vessels to respond instantly to changes in blood pressure and keep the blood pressure within a desired range. The system would ensure less guess work of whether or not and at what level a patient will get side effects with antihypertensive drugs.

"This is an exciting project which we hope will lead to further developments in the field of using nerve stimulation as a therapy to modulate organ system function; not just for hypertension control, but a much wider range of conditions such as diabetes, sleep apnea, chronic pain and chronic obstructive pulmonary disorders," Wijesundara said.

The closed-loop system will allow patients to feel assured that they are receiving proper treatment for their level of cardiac illness without unknown side effects. An added benefit is that the patient incurs less expense because there are no drug-induced side-effects to rectify.

"It's gratifying to see that active collaborations between UTA bioengineering and UTARI continue to bear success" said Michael Cho, chair of the UTA Department of Bioengineering. "We all look forward to even more collaborative efforts that maximize expertise and research interests."

Kim's research interests are in early cancer detection, brain tumor migration, neuroprosthetics, and bioelectronic medicine. He has partnered with UT Southwestern Medical Center and many colleagues, including Bioengineering Professor Cheng-Jen Chuong and Electrical Engineering Associate Professor Samir Iqbal.

Behbehani is the former dean of the College of Engineering. His research interests are focused on sleep apnea diagnostics and treatment devices. He is the owner of nine patents.

Wijesundara heads up the UTARI division that looks to advance technology that applies to tissue regeneration and wound healing, drug delivery, and prosthetic devices and interfaces. Most recently, he has worked on projects that designed a rehab glove that helps stroke victims, a smart glove that delivers needed medicine to an injured hand and speeds up healing, and a smart cushion designed to prevent pressure ulcers in wheelchair users.
UT Arlington Research Institute

UTARI performs research and development that links discovery, development, and technology commercialization leading to technology-based economic development which benefits our society. Building sustainable relationships with regional business and industry is key to our success. Our work involves seeking externally sponsored research funding by writing competitive proposals, collaborating with faculty and government agencies, involving students in our work to enhance their education, contributing to the University's strategic goals and objectives, and being a responsible community partner. Visit to learn more.

About The University of Texas at Arlington

The University of Texas at Arlington is a Carnegie Research-1 "highest research activity" institution of about 55,000 students in campus-based and online degree programs and is the second-largest institution in The University of Texas System. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2016 Best for Vets list. Visit to learn more, and find UTA rankings and recognition at

For more on the Strategic Plan, see Strategic Plan 2020: Bold Solutions | Global Impact.

University of Texas at Arlington

Related Blood Pressure Articles:

Do you really have high blood pressure?
A study by researchers at the University of Montreal Hospital Research Centre (CRCHUM) shows that more than half of family doctors in Canada are still using manual devices to measure blood pressure, a dated technology that often leads to misdiagnosis.
Why do we develop high blood pressure?
Abnormally high blood pressure, or hypertension, may be related to changes in brain activity and blood flow early in life.
For some, high blood pressure associated with better survival
Patients with both type 2 diabetes and acute heart failure face a significantly lower risk of death but a higher risk of heart failure-related hospitalizations if they had high systolic blood pressure on discharge from the hospital compared to those with normal blood pressure, according to a study scheduled for presentation at the American College of Cardiology's 66th Annual Scientific Session.
$9.4 million grant helps scientists explore how cell death from high blood pressure fuels even higher pressure
It's been known for decades that a bacterial infection can raise your blood pressure short term, but now scientists are putting together the pieces of how our own dying cells can fuel chronically high, destructive pressure.
Blood pressure diet improves gout blood marker
A diet rich in fruits, vegetables, low-fat dairy and reduced in fats and saturated fats (the DASH diet), designed decades ago to reduce high blood pressure, also appears to significantly lower uric acid, the causative agent of gout.
New tool to improve blood pressure measurement
Oxford University researchers have developed a prediction model that uses three separate blood pressure readings taken in a single consultation and basic patient characteristics to give an adjusted blood pressure reading that is significantly more accurate than existing models for identifying hypertension.
Blood vessels sprout under pressure
It is blood pressure that drives the opening of small capillaries during angiogenesis.
Better blood pressure control -- by mobile phone
An interactive web system with the help of your mobile phone can be an effective tool for better blood pressure control.
Time to reassess blood-pressure goals
High blood pressure or hypertension is a major health problem that affects more than 70 million people in the US, and over one billion worldwide.
With help from pharmacists, better blood pressure costs $22
A pharmacist-physician collaboration in primary-care offices effectively and inexpensively improved patients' high blood pressure.

Related Blood Pressure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...