Nav: Home

Using nanotechnology to target inoperable tumors from the inside out

October 04, 2016

ARLINGTON, Texas -- Many solid tumors are considered inoperable because they adhere to vital structures or the surgery would cause irreversible damages to the patients. In order to prevent the tumor growth or provide complete tumor resolution without surgery, chemotherapy and radiation are currently in clinical practice.

Unfortunately, severe adverse side effects are usually associated with these therapeutic methods. Since these tumors are already locally advanced or have begun to metastasize, the outlook today for these cancer patients is bleak and survival rate remains very low.

Yaowu Hao, an associate professor in the Materials Science and Engineering Department at The University of Texas at Arlington, has earned a three-year, $477,000 R15 grant from the National Institutes of Health to develop radiotherapeutic nanoseeds that will work from inside inoperable solid tumors and cause less damage to healthy cells.

The research also was featured in a Scientific Reports paper published earlier this year titled "Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors."

Inoperable solid tumors are often targeted with radiation. One way of applying the radiation is to surgically implant a 2-millimeter-by-5-millimeter "seed" with therapeutic isotopes into the tumor. Two millimeters is about seven one-hundredths of an inch.

This procedure is highly invasive and can only be used in certain parts of the body - usually the prostate - because of the damage caused by the implantation process and the fact that a foreign object remains inside the patient's body after treatment.

Instead, Hao has developed biocompatible nanoseeds that are injectable with a very small needle and cause limited trauma to surrounding tissue. Because the nanoseeds are injectable, they can be used in tumors in other areas of the body, such as the brain, lungs and liver.

"Our main breakthrough is the development of uniquely coated gold nanoparticles that act as a carrier for the radioactive isotopes," Hao said. "We chose gold because it is inert and biocompatible. The nanoseed is about 100 nanometers in size, so it is small enough to be injected in solution but large enough that it will not spread out of the tumor."

This type of radiation therapy is highly effective in attacking a tumor, but is also safer for the surrounding tissue because the radiation is contained within the tumor.

Hao said another benefit is that because the seeds are injectable, it is much easier to control the radiation dosages.

Stathis Meletis, chair of UTA's Materials Science and Engineering Department, says that Hao's grant is an excellent example of UTA's emphasis on health and the human condition contained within the Strategic Plan 2020: Bold Solutions | Global Impact.

"Dr. Hao has discovered a breakthrough in cancer treatment that could have far-reaching benefits. This grant will allow him to build upon his preliminary results and develop a treatment method that is aggressive and effective in eliminating tumors," Meletis said.

Hao joined UTA in 2005 following a postdoctoral fellowship at Johns Hopkins University. His research focuses on synthesis, characterization and applications of metal and magnetic nanostructures.

Several other UTA engineering faculty are also working on cancer-related research, including:

  • Samir Iqbal in electrical engineering and bioengineering has developed a novel cancer cell detection method that will improve early diagnosis through a tool that tracks cellular behavior in real time using nanotextured walls that mimic layers of body tissue.

  • Liping Tang in bioengineering is using tissue-engineered artificial lymph nodes to attract prostate cancer cells to better target and eradicate the disease. He is also part of a team including researchers from UTA's College of Science, UT Southwestern and MD Anderson Cancer Center that is developing a multifunctional platform that can integrate imaging and photo-induced cancer therapy in a single, portable device.

  • Kytai Nguyen in bioengineering developed a novel cancer cell-selective nanoparticle system that can both target for imaging and drug delivery to detect and cure prostate cancer.

  • J.-C. Chiao of electrical engineering developed a microfluidic device to predict cancer metastasis risk. Using prostate cancer patients' own blood, the device can find out the risk of cancer becoming metastatic.

-end-
About The University of Texas at Arlington

The University of Texas at Arlington is a Carnegie Research-1 "highest research activity" institution of about 55,000 students in campus-based and online degree programs and is the second-largest institution in The University of Texas System. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2016 Best for Vets list. Visit http://www.uta.edu to learn more, and find UTA rankings and recognition at http://www.uta.edu/uta/about/rankings.php.

For more on the Strategic Plan, see Strategic Plan 2020: Bold Solutions | Global Impact.

University of Texas at Arlington

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.