Nav: Home

An appetite suppressant with side effects

October 04, 2016

Taking a nap after lunch to digest and relax sounds like a good strategy. However, feeling drowsy after breakfast already would make less sense. Scientists from the University of Würzburg have now identified a peptide that could assume a key role in the complex interactions of hunger, sleep and digestion in the fruit fly Drosophila. The receptors which these peptides act on have closely related counterparts in humans.

Researching genetically modified fruit flies

The peptide is called allatostatin A in scientific speak. "We already knew that allatostatin is produced by both cells in the brain and in the intestine of Drosophila. But we did not know what effects they have there," Professor Christian Wegener describes the starting point of the new study sponsored by the Deutsche Forschungsgemeinschaft (DFG). Wegener is a neurogeneticist at the Department of Neurobiology and Genetics at the University of Würzburg. Together with his PhD student Jiangtian Chen, he investigated which influence the peptide has on the flies' behaviour.

The researchers studied fruit flies that were genetically modified to have only six allatostatin-producing neurons in their brains. Furthermore, these cells were fitted with a kind of temperature-controlled molecular "switch". An ambient temperature above 29 degrees Celsius caused the allatostatin signal to be "switched on" whereas it was "switched off" at lower temperatures.

The study results

The study provided surprising results: when the cells released allatostatin, the fruit flies consumed much less food than insects from the control group. At the same time, they moved much less compared with the non-modified animals. At first, the scientists were uncertain about the cause: "When looking at the insects, it's not evident whether they don't have the energy to walk because they don't eat or whether they are unable to move for other reasons. Also it is unclear whether they are hungry or whether they just don't need so much because they exhibit so little activity," Professor Wegener outlines the dilemma.

Further experiments were required to answer these questions. They demonstrated that fruit flies with activated allatostatin signalling do not seem to be hungry. When the scientists lowered the ambient temperature back to values below 29 degrees - thereby switching peptide release off - the insects did not consume more food than the control group. So they were obviously not ravenous. Their locomotor system, too, worked normally - they exhibited no differences compared to the control group in terms of the speed with which they climbed up a tube.

But there was one distinct difference in the locomotor behaviour: Fruit flies that are temporarily exposed to slight shaking on a kind of "vibrating plate" usually respond with a significant increase in locomotor activity. Insects with a high allatostatin level did not deviate from this behaviour - however only in the morning. At noon and in the evening, their activity patterns were unaffected and the flies remained stationary. This finding put the scientists onto the right track: "If the fruit flies move so little, it might be that they are asleep," Wegener says. They were right: Fruit flies with activated allatostatin A cells sleep during 1,400 minutes of the day's 1,440 minutes.

Surprising link to the circadian clock

Normally, the work of Christian Wegener and Jiangtian Chen would have ended at this point had it not been for the cooperation with Professor Charlotte Förster, Head of the Department of Neurobiology and Genetics, within the DFG Collaborative Research Center 1047 "Insect Timing". An expert in circadian clocks, Förster noticed that the six allatostatin-producing neurons in the brain of Drosophila are located in the direct vicinity of clock neuron terminals. The two researchers acted on her suggestion to take a closer look at this aspect.

What they found was that allatostatin neuron arborisations overlap exactly with clock neuron arborisations, and carry receptors for the neuropeptide PDF which is released by the clock neurons. But the circadian clock's influence at this point is comparably small. "When the PDF receptor is activated, fruit flies will sleep a little longer in the morning and in the evening. This is about the only change we were able to identify," says Christian Wegener. After all, any other findings would have surprised the researchers: "There are many peptides that control the sleeping and feeding behaviour." So it might be that the recently discovered mechanism is not a main path but an ancillary path of sleep control that connects sleeping with feeding habits.

Similarities to human receptor

There is another interesting aspect from a scientific viewpoint: The cells of vertebrates, and hence of humans, do not produce allatostatin. But the receptor on which the peptide acts has a comparable counterpart, namely the galanin receptor. "It controls sleep, eating behaviour and the peristalsis of the digestive system and hence adjusts to the digestion phase," Wegener says. However, it is unknown whether the galanin receptor is also associated with the circadian clock. Further studies are necessary to answer this question.

In the future, Christian Wegener and his team plan to focus on the fruit fly larvae which eat constantly and never sleep. Moreover, the allatostatin-producing cells in the larvae could be switched off selectively in the intestine or the brain, which was impossible in adult flies.
-end-
Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF. Jiangtian Chen, Wencke Reiher, Christiane Hermann-Luibl, Azza Sellami, Paola Cognigni, Shu Kondo, Charlotte Helfrich-Förster Jan A. Veenstra, Christian Wegener. PLOS Genetics, DOI:10.1371/journal.pgen.1006346

University of Würzburg

Related Sleep Articles:

Wind turbine noise affects dream sleep and perceived sleep restoration
Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows.
To sleep deeply: The brainstem neurons that regulate non-REM sleep
University of Tsukuba researchers identified neurons that promote non-REM sleep in the brainstem in mice.
Chronic opioid therapy can disrupt sleep, increase risk of sleep disorders
Patients and medical providers should be aware that chronic opioid use can interfere with sleep by reducing sleep efficiency and increasing the risk of sleep-disordered breathing, according to a position statement from the American Academy of Sleep Medicine.
'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.
Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.
Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.
Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.
Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?
Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.
Kicking, yelling during sleep? Study finds risk factors for violent sleep disorder
Taking antidepressants for depression, having post-traumatic stress disorder or anxiety diagnosed by a doctor are risk factors for a disruptive and sometimes violent sleep disorder called rapid eye movement (REM) sleep behavior disorder, according to a study published in the Dec.
More Sleep News and Sleep Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.