Nav: Home

Developing brain regions in children hardest hit by sleep deprivation

October 04, 2016

Sleep is vital for humans. If adults remain awake for longer than usual, the brain responds with an increased need for deep sleep. This is measured in the form of "slow wave activity" using electroencephalography (EEG). In adults, these deep-sleep waves are most pronounced in the prefrontal cortex - the brain region which plans and controls actions, solves problems and is involved in the working memory.

Sleep deprivation in children increases deep sleep in posterior brain regions

For the first time, researchers from UZH have now demonstrated that curtailed sleep in children also results in locally increased deep sleep. "However, a child's brain reacts differently to acute sleep deprivation than an adult's," stresses Salome Kurth from the Pulmonary Clinic at University Hospital Zurich. "The deep-sleep effect doesn't appear in the front regions of the brain like in adults, but rather in the back - in the parietal and occipital lobes."

The team of researchers also discovered that the heightened need for sleep - measured as an increase in deep sleep - in children is associated with the myelin content in certain nerve fiber bundles: the optic radiation. This brain region is part of the visual system responsible for spatial perception and processing multi-sensorial input. The level of myelin - a fatty sheath around the nerve fibers, which accelerates the transfer of electrical signals - is a yardstick for brain maturity and increases in the course of childhood and adolescence. The new results now reveal that the higher the myelin content in a brain region, the more similar the deep-sleep effect is to adults.

Deep-sleep effect depends on extent of brain maturity

In order to study the effects of sleep deprivation in children a collaboration was launched with the University of Colorado Boulder (USA). The sleep researchers measured the brain activity in 13 healthy five to 12-year-olds as they slept. The EEG measurements with a total of 128 electrodes were conducted twice overnight at home with the families. On the first occasion, the children went to bed at their normal bedtime; the second time, they stayed awake until late and thus received exactly half the normal amount of sleep. The scientists also determined the myelin content in the brain with the aid of a recently developed, non-invasive magnetic resonance imaging technique.

"Our results show that the deep-sleep effect occurs specifically in a particular region of the brain and is linked to the myelin content," sums up Kurth. According to the researcher, this effect might only be temporary, i.e. only occur during sensitive developmental phases in childhood or adolescence. The scientists assume that the quality of sleep is jointly responsible for the neuronal connections to develop optimally during childhood and adolescence. Consequently, it is important for a child to sleep sufficiently during this life phase. According to international guidelines, the recommended amount of sleep for children aged 6 to 13 is 9 to 11 hours per night.
-end-
Literature:

Salome Kurth, Douglas C. Dean, Peter Achermann, Jonathan O'Muircheartaigh, Reto Huber, Sean C. L. Deoni and Monique LeBourgeois. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children. Frontiers in Human Neuroscience. September 21, 2016. doi: 10.3389/fnhum.2016.00456

Contakt:

Salome Kurth, PhD
Baby Sleep Laboratory
Pulmonary Clinic
University Hospital Zurich
Phone: +41 44 255 13 32
E-mail: salome.kurth@usz.ch

University of Zurich

Related Brain Activity Articles:

More brain activity is not always better when it comes to memory and attention
Potential new ways of understanding the cause of cognitive impairments, such as problems with memory and attention, in brain disorders including schizophrenia and Alzheimer's are under the spotlight in a new research review.
Researchers to predict cognitive dissonance according to brain activity
A new study by HSE researchers has uncovered a new brain mechanism that generates cognitive dissonance -- a mental discomfort experienced by a person who simultaneously holds two or more contradictory beliefs or values, or experiences difficulties in making decisions.
Brain activity can be used to predict reading success up to 2 years in advance
By measuring brainwaves, it is possible to predict what a child's reading level will be years in advance, according to research from Binghamton University, State University of New York.
There's a close association between magnetic systems and certain states of brain activity
Scientists from the University of Granada (UGR) have proven for the first time that there is a close relationship between several emerging phenomena in magnetic systems (greatly studied by condensed matter physicists) and certain states of brain activity.
Hormone can enhance brain activity associated with love and sex
The hormone kisspeptin can enhance activity in brain regions associated with sexual arousal and romantic love, according to new research.
Manipulating brain activity to boost confidence
Is it possible to directly boost one's own confidence by directly training the brain?
Brain activity may predict risk of falls in older people
Measuring the brain activity of healthy, older adults while they walk and talk at the same time may help predict their risk of falls later, according to a study published in the Dec.
Neuro chip records brain cell activity
In order to understand how the brain controls functions, such as simple reflexes or learning and memory, we must be able to record the activity of large networks and groups of neurons.
Too much activity in certain areas of the brain is bad for memory and attention
Researchers led by Dr Tobias Bast in the School of Psychology at The University of Nottingham have found that faulty inhibitory neurotransmission and abnormally increased activity in the hippocampus impairs our memory and attention.
Brain changes after menopause may lead to lack of physical activity
Researchers from the University of Missouri have found a connection between lack of ovarian hormones and changes in the brain's pleasure center, a hotspot in the brain that processes and reinforces messages related to reward, pleasure, activity and motivation for physical exercise.

Related Brain Activity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...