Nav: Home

Using nature's own solvents for the preparation of pure lignin

October 04, 2016

Lignin can now be efficiently and cost-effectively separated from sawdust, by using eutectic solvents. VTT Technical Research Centre of Finland has developed solvents using which 50% of the lignin from wood can be extracted in a pure form that retains its natural chemical structure during processing. Using eutectic solvents, it may be possible to produce materials for use in the forest, food processing, pharmaceutical, packaging and mining industries in the future.

The use of eutectic solvents presents a range of opportunities for using lignin in industrial applications. A VTT research programme aims to replace petroleum-based chemicals with cost-effective, environmentally friendly alternatives in forest, pharmaceutical and mining industry applications; these will provide Finnish companies with a competitive edge on the international markets.

One of the key results of the research is the separation of lignin from sawdust in such a manner that up to 100% of the lignin maintains its natural chemical structure. Conventional processes provide lignin in a form which is much less usable in terms of its chemistry. This is why lignin has mainly been used for combustion in energy production. Lignin which has retained its natural organic structure is thought to be more reactive and homogeneous, and therefore easier to use in various applications. The research findings were recently published in the journal, Scientific Reports (Jaakko Hiltunen et al.) Scientific Reports, 2016, 6, Article number: 32420; DOI: 10.1038/srep32420).

VTT's research is also opening up new opportunities to use enzymes in fractionation and metabolising processes - according to the preliminary results, carbohydrate-metabolising enzymes can maintain their stability surprisingly well in certain DES solvents, whereas enzymes have tended to be relatively unstable in new biomass-degrading solvents, such as ionic liquids, which resemble DES solvents in many of their properties. The research findings were published this year in the RSC Advances journal (Ronny Wahlström et al. RSC Adv., 2016, 6, 68100-68110; DOI: 10.1039/C6RA11719H).

Some components of eutectic solvents are fit for consumption. Interactions between the components enable chemical reactions that would be impossible to create with conventional chemical processes.

Eutectic solvents are prepared simply by heating and stirring and are inexpensive compared to conventional ionic solvents. However, their recoverability and recyclability via industrial processes have to be investigated in each case.

VTT is studying eutectic solvents as part of the 'Oil-free chemistry programme' funded by Tekes, which ended in the spring of 2016. The results indicate that eutectic solvents can be utilised in applications such as biomass fractionation, the stabilisation of certain enzymes, and potential new surface-active agents.

What are eutectic solvents?


A eutectic solvent incorporates two or more substances with high melting points in a mixture with a melting point substantially lower than any of the individual pure components. A known example of this is the mixture (mole ratio 1:2) of choline chloride (mp 302°C) and urea (mp 133°C), which has a melting point of 12°C.

Eutectic solvents represent the next generation of organic solvents; wider research into their possible applications only began in recent years.
-end-
Further information:

Technical Research Centre of Finland Ltd
Jarmo Ropponen, Principal Scientist
jarmo.ropponen@vtt.fi, tel. +358 400215951

Lauri Kuutti, Senior Scientist
lauri.kuutti@vtt.fi, tel. +358 503377764

Further information on VTT:

Olli Ernvall
Senior Vice President, Communications
+358 20 722 6747
olli.ernvall@vtt.fi
http://www.vtt.fi

VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries. We use our research and knowledge to provide expert services for our domestic and international customers and partners, and for both private and public sectors. We use 4,000,000 hours of brainpower a year to develop new technological solutions. VTT in social media: Facebook, LinkedIn, YouTube and Twitter @VTTFinland.

VTT Technical Research Centre of Finland

Related Enzymes Articles:

How nature builds hydrogen-producing enzymes
A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
How host-cell enzymes combat the coronavirus
Host-cell enzymes called PARP12 and PARP14 are important for inhibiting mutant forms of a coronavirus, according to a study published May 16 in the open-access journal PLOS Pathogens by Stanley Perlman of the University of Iowa, Anthony Fehr of the University of Kansas, and colleagues.
New method enables 'photographing' of enzymes
Scientists at the University of Bonn have developed a method with which an enzyme at work can be 'photographed'.
Everyday enzymes, now grown in plants
Whether we know it or not, enzymes play a role in a range of everyday products, from orange juice to denim jeans.
Balance of two enzymes linked to pancreatic cancer survival
UC San Diego School of Medicine research sets the stage for clinicians to potentially one day use levels of a pancreatic cancer patient's PHLPP1 and PKC enzymes as a prognostic, and for researchers to develop new therapeutic drugs that inhibit PHLPP1 and boost PKC as a means to treat the disease.
Biologists have studied enzymes that help wheat to fight fungi
Scientists from I.M. Sechenov First Moscow State Medical University together with their Russian colleagues studied reaction of wheat plants to damage caused by pathogenic fungi.
Scientists developed enzymes with remote control
Scientists developed a method to enhance the activity of enzymes by using radio frequency radiation.
Enzymes in the cross-hairs
More and more bacteria are resistant to available antibiotics. A team of chemists from the Technical University of Munich now presents a new approach: they have identified important enzymes in the metabolism of staphylococci.
More Enzymes News and Enzymes Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.