Nav: Home

Revising the meaning of 'prion'

October 04, 2016

CAMBRIDGE, Mass. (October 6, 2016) - A team of Whitehead Institute and Stanford University scientists are redefining what it means to be a prion--a type of protein that can pass heritable traits from cell to cell by its structure instead of by DNA.

Although prions are infamous for causing Creutzfeld-Jakob disease, fatal familial insomnia, and bovine spongiform encephalopathy, commonly known as mad cow's disease, the present study indicates that prions identified in yeast, and possibly in plants, and other organisms may be beneficial.

All prions identified thus far share defining characteristics, including the ability to fold into a self-perpetuating conformation, efficient transmission when the contents of a prion-containing cell are injected into a "naïve" cell (a technique known as cytoplasmic transfer), and the ability to form large aggregates of similarly folded proteins, called amyloids. The biological importance of these molecules is underscored by the presence of cellular machines that evolved to propagate prions. One helper protein, called Hsp104, dices up prion aggregates into smaller "seeds" that are passed from a mother to all or almost all daughter cells and confer dominant traits.

To assess the breadth of such protein-based inheritance, the lab of Whitehead Member Susan Lindquist lab devised an unbiased screen that examines all proteins in yeast for those capable of producing stable phenotypes that are passed from mother to daughter cells for at least 100 generations. The screen and its outcome are described in this week's issue of the journal Cell.

When they scrutinized the results, the team noted that most of the 46 prion prospects lack some conventional characteristics, specifically amyloid formation and the dependence on a helper protein to transform the amyloid into heritable seeds. Nevertheless, their protein-conformation dependent traits are dominantly inherited from mother cells to all daughter cells and could be transmitted via cytoplasmic transfer--two key prion traits. Interestingly, most of the identified "molecular memories" help yeast cells adapt to varied stressful environments.

Unlike canonical prions, which are noted for creating specific structures, these proteins contained large sections that are intrinsically disordered, meaning that those domains lack a fixed three-dimensional architecture. In this way, they are related to human proteins that also have prion-like characteristics. According to Sohini Chakrabortee, lead author of the Cell paper, the physical flexibility of intrinsically disordered proteins could allow them to fulfill a variety of roles in a cell, from an enzyme to a chaperone protein like Hsp70. When the team examined the human cognates of the prion-proteins, the intrinsically disordered domains were conserved over hundreds of millions of years.

"This conservation over millennia could be because these proteins are vastly beneficial in nature," says Chakrabortee, who is currently Research Development Officer for European and International Funding for the University of Birmingham, United Kingdom.

For Chakrabortee, the unbiased screen has called into question the fundamental assumptions surrounding prions.

"We don't know how deep is the ocean," she says about the pool of potential prions. "This opens up new directions, and we're just starting to look into what these proteins do and their impact. This screen just gives us a taste of the breadth of prions and protein-based inheritance."
-end-
This work was supported by the National Institutes of Health (NIH grants R00-GM098600, NIH-DP2-GM119140, T32-GM007790, F32-GM109680), the Searle Scholars Program (14-SSP-210), Sidney Kimmel Foundation (SKF-15-154), the David and Lucile Packard Foundation, the Howard Hughes Medical Institute (HHMI), the Harold and Leila Mathers Charitable Foundation, the Eleanor Schwartz Charitable Foundation, the Broodbank Trust, Hughes Hall fellowship (University of Cambridge), the Ford Foundation, Stanford University, and the Stanford Summer Research Program/Amgen Scholars Program.

Susan Lindquist's primary affiliation is with Whitehead Institute for Biomedical Research, where her laboratory is located and all her research is conducted. She is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Intrinsically disordered proteins drive emergence and inheritance of biological traits"

Cell, October 6, 2016.

Sohini Chakrabortee (1,6,8), James S. Byers (2,6), Sandra Jones (1,9), David M. Garcia (3), Bhupinder Bhullar (1,10), Amelia Chang (4,11), Richard She (3), Laura Lee (4), Brayon Fremin (3,7), Susan Lindquist (1,5), Daniel F. Jarosz (2,3).

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142

2. Department of Developmental Biology, Stanford University, 269 Campus Drive Stanford, CA 94305

3. Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305

4. Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305

5. HHMI and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

6. Co-first author

7. Present address: Department of Genetics, Stanford University, Stanford, CA 94305, USA

8. Present address: University of Birmingham, Edgbaston, Birmingham B15 2SQ, UK

9. Present address: The Rockefeller University, New York, NY 10065, USA

10. Present address: Novartis Institute for Biomedical Research, 4002 Basel, Switzerland

11. Present address: Harvard Medical School, Boston, MA 02118, USA

Whitehead Institute for Biomedical Research

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
Proteins' fluorescence a little less mysterious
Rice University scientists use simulations to understand the mechanism behind a popular fluorescent protein used to monitor signals between neurons.
New study suggests health benefits of swapping animal proteins for plant proteins
Substituting one to two servings of animal proteins with plant proteins every day could lead to a small reduction in the three main cholesterol markers for cardiovascular disease prevention, a new study suggests.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.