Nav: Home

Revising the meaning of 'prion'

October 04, 2016

CAMBRIDGE, Mass. (October 6, 2016) - A team of Whitehead Institute and Stanford University scientists are redefining what it means to be a prion--a type of protein that can pass heritable traits from cell to cell by its structure instead of by DNA.

Although prions are infamous for causing Creutzfeld-Jakob disease, fatal familial insomnia, and bovine spongiform encephalopathy, commonly known as mad cow's disease, the present study indicates that prions identified in yeast, and possibly in plants, and other organisms may be beneficial.

All prions identified thus far share defining characteristics, including the ability to fold into a self-perpetuating conformation, efficient transmission when the contents of a prion-containing cell are injected into a "naïve" cell (a technique known as cytoplasmic transfer), and the ability to form large aggregates of similarly folded proteins, called amyloids. The biological importance of these molecules is underscored by the presence of cellular machines that evolved to propagate prions. One helper protein, called Hsp104, dices up prion aggregates into smaller "seeds" that are passed from a mother to all or almost all daughter cells and confer dominant traits.

To assess the breadth of such protein-based inheritance, the lab of Whitehead Member Susan Lindquist lab devised an unbiased screen that examines all proteins in yeast for those capable of producing stable phenotypes that are passed from mother to daughter cells for at least 100 generations. The screen and its outcome are described in this week's issue of the journal Cell.

When they scrutinized the results, the team noted that most of the 46 prion prospects lack some conventional characteristics, specifically amyloid formation and the dependence on a helper protein to transform the amyloid into heritable seeds. Nevertheless, their protein-conformation dependent traits are dominantly inherited from mother cells to all daughter cells and could be transmitted via cytoplasmic transfer--two key prion traits. Interestingly, most of the identified "molecular memories" help yeast cells adapt to varied stressful environments.

Unlike canonical prions, which are noted for creating specific structures, these proteins contained large sections that are intrinsically disordered, meaning that those domains lack a fixed three-dimensional architecture. In this way, they are related to human proteins that also have prion-like characteristics. According to Sohini Chakrabortee, lead author of the Cell paper, the physical flexibility of intrinsically disordered proteins could allow them to fulfill a variety of roles in a cell, from an enzyme to a chaperone protein like Hsp70. When the team examined the human cognates of the prion-proteins, the intrinsically disordered domains were conserved over hundreds of millions of years.

"This conservation over millennia could be because these proteins are vastly beneficial in nature," says Chakrabortee, who is currently Research Development Officer for European and International Funding for the University of Birmingham, United Kingdom.

For Chakrabortee, the unbiased screen has called into question the fundamental assumptions surrounding prions.

"We don't know how deep is the ocean," she says about the pool of potential prions. "This opens up new directions, and we're just starting to look into what these proteins do and their impact. This screen just gives us a taste of the breadth of prions and protein-based inheritance."
-end-
This work was supported by the National Institutes of Health (NIH grants R00-GM098600, NIH-DP2-GM119140, T32-GM007790, F32-GM109680), the Searle Scholars Program (14-SSP-210), Sidney Kimmel Foundation (SKF-15-154), the David and Lucile Packard Foundation, the Howard Hughes Medical Institute (HHMI), the Harold and Leila Mathers Charitable Foundation, the Eleanor Schwartz Charitable Foundation, the Broodbank Trust, Hughes Hall fellowship (University of Cambridge), the Ford Foundation, Stanford University, and the Stanford Summer Research Program/Amgen Scholars Program.

Susan Lindquist's primary affiliation is with Whitehead Institute for Biomedical Research, where her laboratory is located and all her research is conducted. She is also a Howard Hughes Medical Institute investigator and a professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Intrinsically disordered proteins drive emergence and inheritance of biological traits"

Cell, October 6, 2016.

Sohini Chakrabortee (1,6,8), James S. Byers (2,6), Sandra Jones (1,9), David M. Garcia (3), Bhupinder Bhullar (1,10), Amelia Chang (4,11), Richard She (3), Laura Lee (4), Brayon Fremin (3,7), Susan Lindquist (1,5), Daniel F. Jarosz (2,3).

1. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142

2. Department of Developmental Biology, Stanford University, 269 Campus Drive Stanford, CA 94305

3. Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305

4. Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305

5. HHMI and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

6. Co-first author

7. Present address: Department of Genetics, Stanford University, Stanford, CA 94305, USA

8. Present address: University of Birmingham, Edgbaston, Birmingham B15 2SQ, UK

9. Present address: The Rockefeller University, New York, NY 10065, USA

10. Present address: Novartis Institute for Biomedical Research, 4002 Basel, Switzerland

11. Present address: Harvard Medical School, Boston, MA 02118, USA

Whitehead Institute for Biomedical Research

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...