Nav: Home

Performance-enhancing... research? New measurement could help elite athletes: York U

October 04, 2016

TORONTO, October 4, 2016 - Canadian Olympic phenomenon Penny Oleksiak may be able to glide through the water even faster at her next Olympic Games, due in part to a new measurement tool invented by York University researchers.

"We asked ourselves the basic question: 'how does liquid spread on a surface?', be it Penny's swimsuit while underwater, or the morning dewdrops on grass," says Sushanta Mitra, a professor in York's Lassonde School of Engineering. "Oleksiak's exceptional ability in the pool is undeniable. A more advanced suit could help her beat her personal best by reducing fluid resistance underwater."

Mitra's research has resulted in a new technique that measures the rapid process of liquid drops spreading on any surface. Interface scientists in his Micro & Nano-scale Transport (MNT) lab at York U have created an experimentation tool with funding from the Natural Sciences and Engineering Research Council (NSERC). The tool, built with an optical path using specialized microscopic lenses, captures the bottom view and side view of a spreading drop. It enabled researchers to observe the initial stages of a drop spreading on any surface inside a glass container filled with water.

"Since water is a viscous medium, the spreading process was significantly slowed, which allowed us to discover the initial regime. This is the first time this process has ever been measured," says Mitra, whose team also performs breakthrough translation research in water quality monitoring. "Soon we'll have new and improved products in water-repellant coatings, materials with underwater drag reductions and the like, on the market," says Mitra.

Traditional drop spreading experiments are conducted in air and there needs to be a few nanometer resolution to accurately characterize the initial stage of the process. That is below the physical limit of current optical systems used in experiments, according to co-author Surjyasish Mitra, whose graduate studies at York focus on fluid dynamics. "We overcame the challenges of conducting experiments underwater by using the new tool which brought down the length scale to micron levels."

The study, "Understanding the Early Regime of Drop Spreading," is published as the cover feature in peer-reviewed journal for fundamental interface science Langmuir.
-end-
Images for media use:
  • The three stages of drop spreading on any surface
  • The side view of drop spreading (vertical panel) and the corresponding bottom view (horizontal plane) of drop from initial stage to its final equilibrium position

York University is known for championing new ways of thinking that drive teaching and research excellence. Our students receive the education they need to create big ideas that make an impact on the world. Meaningful and sometimes unexpected careers result from cross-discipline programming, innovative course design and diverse experiential learning opportunities. York students and graduates push limits, achieve goals and find solutions to the world's most pressing social challenges, empowered by a strong community that opens minds. York U is an internationally recognized research university - our 11 faculties and 26 research centres have partnerships with 200+ leading universities worldwide. Located in Toronto, York is the third largest university in Canada, with a strong community of 53,000 students, 7,000 faculty and administrative staff, and more than 295,000 alumni. York U's fully bilingual Glendon campus is home to Southern Ontario's Centre of Excellence for French Language and Bilingual Postsecondary Education.

Media contact:

Gloria Suhasini, Media Relations, York University, 416 736 2100 ext. 22094, suhasini@yorku.ca

York University

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...