Genomic study finds a new role for microRNAs as predictors of Crohn's disease progression

October 04, 2018

CHAPEL HILL, N.C. - Crohn's disease is a lifelong condition characterized by a fluctuating course of gastro-intestinal inflammation with repeated flares and remissions. Any part of the alimentary tract from the mouth to the anus can be affected resulting in diverse symptoms including abdominal pain, watery diarrhea, and hematochezia. Furthermore, persistent inflammation can result in complications, such as a narrowing of the large intestine called strictures or perforations in the intestinal wall, both of which often require surgical treatment and severely compromise the quality of life of Crohn's patients. The incidence of Crohn's disease has increased throughout the world over the last 50 years for all ages, indicating its emergence as a global disease.

Currently available drugs for Crohn's disease also increase the potential risk of serious side effects including opportunistic infection and cancer development. Because disease course widely varies among patients and no "one size fits all" treatment exists, determining which patients are at high risk for poor clinical outcome is a critical problem in the management of Crohn's disease.

Now a new study conducted in adult and pediatric patients with Crohn's disease, led by UNC School of Medicine researchers and published in the Journal of Clinical Investigation (JCI) Insight, has found that a set of biomolecules known as microRNAs, specifically microRNA-31 (miR-31), can help predict which patients with Crohn's disease are at higher risk for the development of severe problems that may require surgical removal of the large intestine.

"For such a clinically heterogenous disease, this kind of molecular phenotyping is a major step towards personalization of medical therapy, said co-senior author Shehzad Z. Sheikh, MD, PhD, associate professor of medicine and genetics. "These results add to a series of papers from our group where we combine genomic technologies with rigorous validation in patient-derived, disease-relevant cell systems to develop molecular markers with prognostic utility."

A key validation step in this research involved the generation of organoids or 'mini-guts' that architecturally and physiologically resemble the human intestine. Sheikh and colleagues derived organoids from Crohn's patients to preserve the molecular defects observed in the patient tissue.

"This innovative system can serve as a personalized testing platform to screen therapeutic agents before administering them to the patient," Sheikh said."

In the study, small RNA-sequencing was performed on adult colon tissue from 18 adults with Crohn's disease and 12 controls. Small RNA-sequencing was also performed on colon tissue from 76 children who were newly diagnosed with Crohn's but had not received any treatment yet, and 51 controls. In addition to these whole tissue assays, colonic epithelial cells and immune cells were isolated from colonic tissues and miR-31 expression was measured.

These analyses found that in adults, low colonic miR-31 expression at the time of surgery was associated with worse disease outcomes, requiring an end ileostomy and later recurrence of disease. In children, low colonic miR-31 expression at the time of diagnosis was found to be associated with future development of strictures that required surgery.

"In recent years there has been great success in deriving molecular signatures that classify several cancers into subtypes, including studies performed here at UNC," said co-senior author Terry Furey, PhD, associate professor of genetics and biology and a member of the UNC Lineberger Comprehensive Cancer Center. "These subtypes, then, have been shown to be useful in determining cancer progression and response to specific therapies. Our long-term goal, extending the work in this study, is to uncover molecular subtypes of Crohn's disease to not only increase our understanding of the root causes of the disease and the vast clinical heterogeneity, but also to more strategically use current therapies and provide the basis for new therapies that specifically target these subtypes."

The third co-corresponding author is Praveen Sethupathy, PhD, associate professor of biomedical sciences at Cornell University, who established a collaboration with Drs. Sheikh and Furey while he was a faculty member at UNC from 2011-2017. "While microRNAs as prognostic indicators of disease development has emerged as an exciting concept, there have been very few clinically actionable examples to date. We are excited about our findings because, while it is just the beginning and more work remains to be done, it opens the possibility of using microRNAs to improve clinical trial designs for Crohn's disease and developing more personalized therapeutic strategies for patients. Also, our study emphasizes the importance of epithelial biology in Crohn's disease, which merits deeper investigation to delineate mechanisms that underlie the etiology of different disease subtypes," Sethupathy said.

Benjamin P. Keith, a graduate student in the Sheikh Lab, is first author of the study. He highlighted the importance of the methods the researchers used in the clinic to preserve patient tissue samples.

"Preserving tissue in this way usually results in heavily degraded mRNA," Keith said. "But our ability to accurately detect microRNA expression that was not degraded in fixed samples opens up future studies to a wealth of patient samples from across the country to further validate microRNA-31 and a suite of other microRNAs as prognostic markers of Crohn's disease," Keith said.
-end-
UNC co-authors are Jasmine B. Barrow, Takahiko Toyonaga, PhD; Michelle Hoffner O'Connor, Neil D. Shah, MD; Matthew S. Schaner, Elizabeth A. Wolber, Omar K. Trad, Greg R. Gipson, Shruti J. Saxena, Nicole Chaumont, MD; Timothy S. Sadiq, MD; Mark J. Koruda, MD; Paul A. Cotney, Nancy Albritton, MD, PhD; Dimitri G. Trembath, MD, PhD; and Francisco Sylvester, MD.

This study was supported by funding from the Crohn's & Colitis Foundation, the National Institute of Environmental Health Sciences (NIEHS), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the American Diabetes Association (ADA), the UNC Nutrition Obesity Research Center, the UNC Center for Gastrointestinal Biology and Disease (CGIBD), the National Institute of General Medical Sciences (NIGMS), the Helmsley Charitable Trust, the National Cancer Institute (NCI) and the UNC University Cancer Research Fund.

University of North Carolina Health Care

Related Genetics Articles from Brightsurf:

Human genetics: A look in the mirror
Genome Biology and Evolution's latest virtual issue highlights recent research published in the journal within the field of human genetics.

The genetics of blood: A global perspective
To better understand the properties of blood cells, an international team led by UdeM's Guillaume Lettre has been examining variations in the DNA of 746,667 people worldwide.

Turning to genetics to treat little hearts
Researchers makes a breakthrough in understanding the mechanisms of a common congenital heart disease.

New drugs more likely to be approved if backed up by genetics
A new drug candidate is more likely to be approved for use if it targets a gene known to be linked to the disease; a finding that can help pharmaceutical companies to focus their drug development efforts.

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties

Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.

The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.

New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.

Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.

New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.

Read More: Genetics News and Genetics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.