Nav: Home

Neutrons scan magnetic fields inside samples

October 04, 2018

Measuring magnetic fields inside samples has only been possible indirectly up to now. Magnetic orientations can be scanned with light, X-rays, or electrons - but only on the surfaces of materials. Neutrons, on the other hand, penetrate deeply into the sample and thanks to their own magnetic orientation can provide precise information about the magnetic fields inside. So far, however, it has only been possible to roughly map the variously aligned magnetic domains using neutrons, but not the vector fields (directions and strengths) of the magnetic fields inside samples.

Spin polarisation is the key

A team led by Dr. Nikolay Kardjilov and Dr. Ingo Manke at the HZB has now developed a new method for measuring the magnetic field lines inside massive, thick samples: For tensorial neutron tomography, they employ spin filters, spin flippers, and spin polarisers that allow only neutrons with mutually aligned spins to penetrate the sample. When these spin-polarised neutrons encounter a magnetic field inside, the field excites the neutron spins to precess, so that the direction of the spin polarisation changes, allowing conclusions to be drawn about the field lines encountered.

3D image calculated with new TMART algorithm

The newly developed experimental method enables a three-dimensional image of the magnetic field inside the sample to be calculated using nine individual tomographic scans, each with a different neutron spin setting. A highly complex mathematical tensor algorithm was newly developed for this purpose by Dr. André Hilger at the HZB, christened TMART.

The experts tested and evaluated the new method on well-understood samples. Subsequently, they were able to map the complex magnetic field inside superconducting lead for the first time.

Flux lines inside superdonductors

The sample of solid, polycrystalline lead was cooled to 4 Kelvin (lead becomes superconducting below 7 Kelvin) and exposed to a magnetic field of 0.5 millitesla. Although the magnetic field is displaced from the interior of the sample due to the Meissner effect, magnetic flux lines nevertheless remain attached to the (non-superconducting) grain boundaries of the polycrystalline sample. These flux lines do not disappear even after the external field has been switched off, because they have previously induced currents inside the superconducting crystal grains, which now maintain these fields.

"For the first time, we can make the magnetic vector field visible in three dimensions in all its complexity within a massive material", says HZB physicist Manke. "Neutrons can simultaneously penetrate massive materials and detect magnetic fields. There is currently no other method that can accomplish this."

Applications from basic research to industry

Magnetic tensor tomography is non-destructive and can achieve resolutions down to the micrometer range. The areas of application are extremely diverse. They range from the mapping of magnetic fields in superconductors and the observation of magnetic phase transitions, to material analysis, which is also of great interest for industry: Field distributions in electric motors and metallic components can be mapped and current flows in batteries, fuel cells, or other propulsion systems can be visualized with this method.
-end-


Helmholtz-Zentrum Berlin für Materialien und Energie

Related Magnetic Field Articles:

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
Researchers discover link between magnetic field strength and temperature
Researchers recently discovered that the strength of the magnetic field required to elicit a particular quantum mechanical process corresponds to the temperature of the material.
More Magnetic Field News and Magnetic Field Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab