Nav: Home

Large-scale US wind power would cause warming that would take roughly a century to offset

October 04, 2018

All large-scale energy systems have environmental impacts, and the ability to compare the impacts of renewable energy sources is an important step in planning a future without coal or gas power. Extracting energy from the wind causes climatic impacts that are small compared to current projections of 21st century warming, but large compared to the effect of reducing US electricity emissions to zero with solar. Research publishing in the journal Joule on October 4 reports the most accurate modelling yet of how increasing wind power would affect climate, finding that large-scale wind power generation would warm the Continental United States 0.24 degrees Celsius because wind turbines redistribute heat in the atmosphere.

"Wind beats coal by any environmental measure, but that doesn't mean that its impacts are negligible," says senior author David Keith (@DKeithClimate), an engineering and public policy professor at Harvard University. "We must quickly transition away from fossil fuels to stop carbon emissions. In doing so, we must make choices between various low-carbon technologies, all of which have some social and environmental impacts."

"Wind turbines generate electricity but also alter the atmospheric flow," says first author Lee Miller. "Those effects redistribute heat and moisture in the atmosphere, which impacts climate. We attempted to model these effects on a continental scale."

To compare the impacts of wind and solar, Keith and Miller started by establishing a baseline for the 2012-2014 US climate using a standard weather forecasting model. Then they added in the effect on the atmosphere of covering one third of the Continental US with enough wind turbines to meet present-day US electricity demand. This is a relevant scenario if wind power plays a major role in decarbonizing the energy system in the latter half of this century. This scenario would warm the surface temperature of the Continental US by 0.24 degrees Celsius.

Their analysis focused on the comparison of climate impacts and benefits. They found that it would take about a century to offset that effect with wind-related reductions in greenhouse gas concentrations. This timescale was roughly independent of the specific choice of total wind power generation in their scenarios.

"The direct climate impacts of wind power are instant, while the benefits accumulate slowly," says Keith. "If your perspective is the next 10 years, wind power actually has--in some respects--more climate impact than coal or gas. If your perspective is the next thousand years, then wind power is enormously cleaner than coal or gas."

More than ten previous studies have now observed local warming caused by US wind farms. Keith and Miller compared their simulated warming to observations and found rough consistency between the observations and model.

They also compared wind power's impacts with previous projections of solar power's influence on the climate. They found that, for the same energy generation rate, solar power's impacts would be about 10 times smaller than wind. But both sources of energy have their pros and cons.

"In terms of temperature difference per unit of energy generation, solar power has about 10 times less impact than wind," says Miller. "But there are other considerations. For example, solar farms are dense, whereas the land between wind turbines can be co-utilized for agriculture." The density of wind turbines and the time of day during which they operate can also influence the climatic impacts.

Keith and Miller's simulations do not consider any impacts on global-scale meteorology, so it remains somewhat uncertain how such a deployment of wind power may affect the climate in other countries.

"The work should not be seen as a fundamental critique of wind power. Some of wind's climate impacts may be beneficial. So rather, the work should be seen as a first step in getting more serious about assessing these impacts," says Keith. "Our hope is that our study, combined with the recent direct observations, marks a turning point where wind power's climatic impacts begin to receive serious consideration in strategic decisions about decarbonizing the energy system."

Keith and Miller also have a related paper, "Observation-based solar and wind power capacity factors and power densities," being published in Environmental Research Letters on October 4, which validates the generation rates per unit area simulated here using observations.
-end-
This research was funded by the Fund for Innovative Climate and Energy Research. David Keith is a board member and acting chief scientist at Carbon Engineering, a clean energy company that aims to make carbon-neutral transportation fuels from wind and solar power.

Joule, Miller et al.: "Climatic Impacts of Wind Power" https://www.cell.com/joule/fulltext/S2542-4351(18)30446-X

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Wind Turbines Articles:

New system uses wind turbines to defend the national grid from power cuts
A 'smart' system that controls the storage and release of energy from wind turbines will reduce the risk of power cuts and support the increase of wind energy use world-wide, say researchers at the University of Birmingham.
Wind beneath their wings: Albatrosses fine-tuned to wind conditions
A new study of albatrosses has found that wind plays a bigger role in their decision to take flight than previously thought, and due to their differences in body size, males and females differ in their response to wind.
Designing lightweight glass for efficient cars, wind turbines
A new machine-learning algorithm for exploring lightweight, very stiff glass compositions can help design next-gen materials for more efficient vehicles and wind turbines.
Quadrupling turbines, US can meet 2030 wind-energy goals
The United States could generate 20% of its electricity from wind within 10 years, without requiring any additional land, according to Cornell University research published in Nature Scientific Reports.
Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.
Wind and water
Damaging rains from hurricanes can be more intense after winds begin to subside, say UC Santa Barbara scientists.
Silverswords may be gone with the wind
In a new study in the Ecological Society of America's journal Ecological Monographs, researchers seek to understand recent population declines of Haleakalā silverswords and identify conservation strategies for the future.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Computer models show clear advantages in new types of wind turbines
Researchers from Aarhus University and Durham University have modelled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations.
(Not only) the wind shows the way
When the South African dung beetle rolls its dung ball through the savannah, it must know the way as precisely as possible.
More Wind Turbines News and Wind Turbines Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.