Nav: Home

Every cell has a story to tell in brain injury

October 04, 2018

Traumatic head injury can have widespread effects in the brain, but now scientists can look in real time at how head injury affects thousands of individual cells and genes simultaneously in mice. This approach could lead to precise treatments for traumatic brain injury (TBI). The study, reported in Nature Communications, was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

"Instead of clustering responses according to categories of cells in TBI, we can now see how individual cells in those groups react to head injury," said Patrick Bellgowan, Ph.D., program director at NINDS.

University of California, Los Angeles professors Fernando Gomez-Pinilla, Ph.D. and Xia Yang, Ph.D., along with their colleagues, used a novel method known as Drop-seq to closely look at individual brain cells in the hippocampus, a region involved in learning and memory, after TBI or in uninjured control animals. Drop-seq allows thousands of cells and genes to be analyzed simultaneously. Its creation was in part funded by the NIH's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative.

"These tools provide us with unprecedented precision to pinpoint exactly which cells and genes to target with new therapies," said Dr. Yang. "Another important aspect to this study was the highly collaborative and multidisciplinary nature of the work. Lots of people, from many different scientific areas, made this study possible."

In one set of experiments the team looked at TBI's effects on gene expression activity in individual cells. They found that certain genes were upregulated or downregulated across many different cell types, suggesting these genes may play important roles in TBI. Some of these genes are also known to be involved in diseases, such as Alzheimer's disease, which may help explain how TBI can be a risk factor for other disorders. For example, Drs. Yang and Gomez-Pinilla's groups observed altered activity in genes that are involved in regulating the amyloid protein, which builds up in Alzheimer's.

In particular, the genomic analysis revealed that the activity of the Ttr gene, which is involved in both thyroid hormone transport and scavenging of amyloid protein in the brain, was increased in many cells following TBI, suggesting the thyroid hormone pathway may be a potential target for therapy. Drs. Gomez-Pinilla and Yang's teams treated animals with the thyroid hormone thyroxine (T4) 1 and 6 hours after brain injury and saw that they performed much better on learning and memory tasks compared to animals that received a placebo.

The team identified 15 clusters of cells based on gene activity, including two clusters, named Unknown1 and Unknown2, the cells of which had not been described previously in the hippocampus. Further analysis of these clusters revealed that the cells in the Unknown1 group were involved in cell growth and migration and the cells in Unknown2 were involved in cell differentiation during development. The findings in this study also reveal that although two cells may have similar structure and shape, their functions, as suggested by the analysis of gene activity, may differ.

"We now know the secret life of single cells, including how they coordinate with other cells and how vulnerable they are to injury," said Dr. Gomez-Pinilla. "In addition, seeing which types of genes, including genes involved in metabolism, were involved across many cell types helps identify processes that may be critical in TBI."

Future studies will examine how TBI affects cells in areas other than the hippocampus. In addition, more research is needed to learn about long-term effects of TBI. Analyzing individual cells and genes may identify potential therapies for TBI.
-end-
This study was supported by NINDS (NS103088, NS50465) and the National Institute of Diabetes and Digestive and Kidney Diseases (DK104363).

Reference:

D Arneson et al. Single cell molecular alterations reveal target cells and pathways of concussive brain injury. Nature Communications. September 25, 2018.

The NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH/National Institute of Neurological Disorders and Stroke

Related Traumatic Brain Injury Articles:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.
Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.
Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.
Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.
Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.
Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).
Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.
Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.
Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).
Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.
More Traumatic Brain Injury News and Traumatic Brain Injury Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.