Nav: Home

Temple scientists ID new targets to treat fibrosis -- a feature of many chronic diseases

October 04, 2019

(Philadelphia, PA) - When it comes to repairing injured tissue, specialized cells in the body known as fibroblasts are called into action. Fibroblasts give rise to healing cells called myofibroblasts, which generally is good in the short term - but bad when myofibroblast activation gets out of hand. In new work, Lewis Katz School of Medicine at Temple University (LKSOM) researchers show how fibroblast activation and myofibroblast formation occurs, providing clues as to how to target fibrosis - which impacts several chronic diseases. Kickstarting the process are stress-induced changes in mitochondrial calcium uptake.

The report, published online October 4 in the journal Nature Communications, describes in detail the novel signaling pathway by which reduced calcium uptake in mitochondria serves as the major regulator of myofibroblast differentiation and fibrosis. When mitochondrial calcium levels drop, cellular metabolism changes and a metabolite known as α-ketoglutarate is upregulated. Increased α-ketoglutarate levels in turn alter the packaging of cellular DNA, changing gene expression for the conversion of fibroblasts into fibrosis-mediating myofibroblasts.

"When fibroblast signaling alters mitochondrial calcium uptake, many metabolic changes occur to promote anabolic pathways to support the formation of these new cells and provide new sources of energy production," said John W. Elrod, PhD, Associate Professor in the Center for Translational Medicine at LKSOM, and senior investigator on the new study. "These changes are necessary for the new role of these cells to alter the cellular environment in an attempt to repair the injured tissue."

While myofibroblast formation is associated with acute wound healing - think the closing of a cut on the skin - the persistence of these cells can give rise to fibrotic diseases, such as liver cirrhosis, pulmonary fibrosis and heart failure.

"Our experiments show that the accumulation of fibrotic cells results directly from mitochondrial calcium-dependent genomic reprogramming involving α-ketoglutarate, which changes the structure of chromatin, or DNA packaging - a phenomenon referred to as epigenetics and that is important in regulating gene expression," Dr. Elrod said. This the first time that extracellular signals directly modifying mitochondrial function have been linked to alterations in the cell nucleus for the generation of myofibroblasts.

"The key finding, that a change in mitochondrial calcium uptake plays a central role in metabolic and genetic reprogramming, presents new opportunities for investigation," explained Dr. Elrod. "We hope that the new pathways we've identified as essential to myofibroblast formation can be manipulated to treat fibrotic disease."

Dr. Elrod and colleagues are continuing to investigate the role of metabolism in fibrosis and plan to carry out further genome-wide sequencing studies to better understand the changes in chromatin structure that take place to maintain myofibroblasts in diseased tissues.
-end-
Alyssa A. Lombardi, an MD, PhD student researcher in Dr. Elrod's laboratory and first author on the new report, led the research.

Other investigators contributing to the new study include Andrew A. Gibb, Ehtesham Arif, Devin W. Kolmetzky, Dhanendra Tomar, Timothy S. Luongo, Pooja Jadiya, and Emma K. Murray at the Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University; Pawel K. Lorkiewicz and Bradford G. Hill, the Institute of Molecular Cardiology, Diabetes and Obesity Center, Department of Medicine, University of Louisville; Gyorgy Hajno?czky, the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia; Elizabeth Murphy, Systems Biology Center, National Heart Lung and Blood Institute; Zoltan P. Arany, Daniel P. Kelly, and Kenneth B. Margulies, the Translational Research Center, Perelman School of Medicine, University of Pennsylvania.

The research was supported in part by National Institutes of Health grants R01HL136954, R01HL123966, 3R01HL123966-05S1, and R01HL142271.

About Temple Health

Temple University Health System (TUHS) is a $2.1 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH); TUH-Episcopal Campus; TUH-Northeastern Campus; The Hospital of Fox Chase Cancer Center and Affiliates, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices; and Temple Faculty Practice Plan, Inc., TUHS's physician practice plan comprised of more than 500 full-time and part-time academic physicians in 20 clinical departments. TUHS is affiliated with the Lewis Katz School of Medicine at Temple University.

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System (TUHS) and by the Katz School of Medicine. TUHS neither provides nor controls the provision of health care. All health care is provided by its member organizations or independent health care providers affiliated with TUHS member organizations. Each TUHS member organization is owned and operated pursuant to its governing documents.

It is the policy of Temple University Health System that there shall be no exclusion from, or participation in, and no one denied the benefits of, the delivery of quality medical care on the basis of race, ethnicity, religion, sexual orientation, gender, gender identity/expression, disability, age, ancestry, color, national origin, physical ability, level of education, or source of payment.

Temple University Health System

Related Fibroblasts Articles:

Interactions between cancer cells and fibroblasts promote metastasis
In order to colonize other organs and grow into metastases, tumor cells that detach from the parent tumor need to manipulate their new microenvironment and create a 'metastatic niche'.
Fibroblasts involved in healing spur tumor growth in cancer
The connective tissue cells known as fibroblasts are vitally important for our recovery from injury.
Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
New insights into the healing capacity of the heart
Researchers report that the Hippo pathway is important for maintaining adult murine cardiac fibroblasts in their resting state.
New cardiac fibrosis study identifies key proteins that translate into heart disease
The formation of excess fibrous tissue in the heart, which underlies several heart diseases, could be prevented by inhibiting specific proteins that bind to RNA while its code is being translated.
Key to targeting the spread of pancreatic cancer
Targeting the tissue around pancreatic cancer cells may be the key to stopping their spread and improving chemotherapy outcomes.
'Promising' antibody therapy extends survival in mice with pancreatic cancer
Scientists have found a way to target and knock out a single protein that they have discovered is widely involved in pancreatic cancer cell growth, survival and invasion.
Special fibroblasts help pancreatic cancer cells evade immune detection
A subpopulation of fibroblasts called apCAFs can interact with the immune system to help pancreatic cancer cells avoid detection.
New understanding of how cells form tunnels may help in treating wounds, tumors
'A major aspect of our research is that it just really illustrates how complex all these different components are going on inside a person's body,' said Andrew Ford.
Missing molecule hobbles cell movement
Cells are the body's workers, and they often need to move around to do their jobs.
More Fibroblasts News and Fibroblasts Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.