CNIO uses organoid technology and single-cell sequencing to advance in the study of bladder cancer

October 04, 2019

Investigation of biological mechanisms in urothelial tissue -one of the three types of tissue that make up the urinary system- has always been very limited due to the lack of technologies that allow working with stable and long-term populations of the cells that compose it. As a consequence, the mechanisms underlying diseases such as bladder cancer -90% of these tumours originate in urothelial cells- or cystitis remain poorly understood. Now, scientists from the Epithelial Carcinogenesis Group led by Paco Real at the Spanish National Cancer Research Centre (CNIO) used innovative organoid technology to achieve stable long-term cultures of mouse urothelial cells. Subsequently, they characterised the organoids by sequencing the RNA of individual cells and identified a small population of stem cells -proliferative cells- that gives rise to the organoids and that could not be studied until now. This will allow working with this population and usher in a new era in the study of diseases of the urinary system. Researcher Catarina P. Santos is the first author of this study, which will be published in the journal Nature Communications.

First in-depth understanding of urothelial cells

Urothelial tissue is one of the three tissue types that make up the organs of the urinary system; it forms a layer that lines the bladder, kidneys, ureters and urethra. These cells are of great importance in the development of bladder cancer since their uncontrolled proliferation causes 90% of these tumours. These cells also play a role in other diseases, such as cystitis, which is very common, especially in women.

The in vitro study of these tissues has been hampered by the impossibility of achieving stable long-term cultures. "Until now, you could only keep the cells in culture for a few days or weeks, and you could hardly work with them because the cells quickly lost their personality," explains Real. "With this new technique, we were able to keep the cells in culture for more than a year and, more importantly, the cells retain the properties of the original tissue."

Organoid technology allows cell cultures to grow in a three-dimensional matrix called Matrigel. Its advantage over traditional cultures in Petri dishes -which are two-dimensional- is that the three-dimensional structure is more similar to the conditions in which cells grow in the body itself. This technology could boost the generation of organs for transplantation in the future.

The researchers went a step further and, thanks to single-cell RNA sequencing, were able to identify the nature of the urothelial stem cell population of these organoids that can proliferate and give rise to cancer. Until now it was not possible to expand, analyse and describe this cell population because it accounts for less than 1% of the total bladder tissue. This makes it very difficult for researchers to work with these cells and, consequently, to make progress in the study of diseases resulting from their incorrect functioning. "Now we don't have to hope to be able to find them in human tissue anymore, but we can look for them directly because we have more information about their identity," says Real. "We can also see how they resemble and how they differ from tumour cells because tumour cells also proliferate inappropriately and they may share some similarities. This will give us clues as to what changed in those cells that led to the formation of a tumour."

New impetus for research into diseases and tissue regeneration

The team also showed that the acquisition of functional properties is dependent on Notch, a gene that in bladder cancer functions as a tumour suppressor: Notch activation causes cells to differentiate, which is a normal function of the cell that serves as a protection mechanism against tumour growth. "We show for the first time that this route, which, in collaboration with researcher Manuel Serrano, we had previously demonstrated to be altered in bladder cancer, plays a role in normal tissue and conditions its differentiation, and that this is probably the reason why it also plays a role in tumours," continues Real. "When this pathway is inactivated, the cells cannot differentiate well and would be more susceptible to developing cancer."

These findings are not only of benefit for bladder cancer research but also for other pathologies of this organ, such as cystitis. "Our work enables researchers who are investigating other pathologies to have stable cell populations in large numbers to study these diseases. In addition, our technique for expanding cell populations can be important for tissue regeneration after surgery."

As next steps in this research, Paco Real aims to perform the same procedure on human cells, genetically manipulate them, and then induce damage to analyse their behaviour in pathological situations and unravel their repair mechanisms.
This study was carried out in collaboration with the group of Alberto Muñoz at the Biomedical Research Institute CSIC-UAM, and with the support of the CNIO Genomics and Confocal Microscopy Units. The study has been funded by the Spanish Ministry of Science, Innovation and Universities, the National Institute of Health Carlos III, CIBERONC and the Spanish Association Against Cancer (AECC).

Reference article: Urothelial organoids originating from Cd49fhigh mouse stem cells display Notch-dependent differentiation capacity. Catarina P. Santos et al (Nature Communications, 2019). DOI:

Centro Nacional de Investigaciones Oncológicas (CNIO)

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to