Nav: Home

The 'Goldilocks' principle for curing brain cancer

October 04, 2019

MINNEAPOLIS, MN- October 4, 2019 - In the story of Goldilocks, a little girl tastes three different bowls of porridge to find which is not too hot, not too cold, but just the right temperature. In a study published in Advanced Therapeutics, University of Minnesota Medical School researchers report on a "Goldilocks" balance which holds the key to awakening the body's immune response to fight off brain cancer.

The most common form of adult brain cancer is glioblastoma. Doctors diagnose about 14,000 glioblastoma cases in the U.S. each year. This aggressive cancer has claimed the lives of Senators John McCain and Edward Kennedy.

"Our body has armies of white blood cells that help us fight off bacteria, viruses and cancer cells. This constellation of cells constitute our immune system," said senior author Clark C. Chen, MD, PhD, Lyle French Chair in Neurosurgery and Head of the Department of Neurosurgery at the University of Minnesota Medical School. "One of the key reasons why glioblastoma is so aggressive is that it shuts off this immune system."

The importance of the immune system in cancer therapy is highlighted by the 2018 Nobel Prize in Physiology or Medicine. The prize was awarded to the discovery of a drug that activates the patient's immune response against cancer cells. Treatment with this immunotherapy drug has produced impressive long-term survival in many cancer types. Unfortunately, this drug does not appear to work against glioblastomas.

"Immunotherapy works by activating the white blood cells that are present in many cancer types. For reasons that are not clear, glioblastomas contain few white blood cells. So, there is nothing for immunotherapy to activate," commented Andrew Kummel, Professor of Chemistry and Biochemistry at the University of California San Diego and co-senior author of this study.

The research team injected hollowed silica (a form of glass) particles into glioblastomas to facilitate recruitment of white blood cells. The injected tumors were then treated with high-intensity focused ultrasound (HIFU). The ultrasound effectively "blew up" the glass particles to rupture cancer cells, releasing proteins that attract white blood cells.

By modulating the high-frequency ultrasound, Chen and his team were able to create different temperatures under which the cancer cells were ruptured.

"Impressively, immunotherapy works only when the ultrasound is adjusted to maintain a stable body temperature as the cancer cells are ruptured," said Chen. "Temperatures that deviate too much from the body temperature appear to compromise the effectiveness of the white blood cells. This 'Goldilocks' aspect of immunotherapy was not previously appreciated."

Importantly, Emad Ebbini, U of M Professor of Electrical and Computer Engineering, has developed an ultrasound system capable of rupturing cancer cells without the use of the silica shell. Ebbini notes, "Our ultrasound is a perfect fit for the type of clinical application that Dr. Chen has developed. We are working toward a first-in-human study to test our ultrasound in glioblastoma patients."
-end-
Co-authors of this study include Chin-Hsin Huang, and Siamak Amifakhri, University of California San Diego as well as Oscar Echaegaray, San Diego State University. This research was supported by the National Cancer Institute of the National Institutes of Health (T32 Training grant no. 5T32CA153915-08; U54 supplementary grant no. 5U54CA132379-08; 1RON1NS097649-01; 9R44GM128223-02) and funds from the Burroughs Wellcome Fund, the Doris Duke Charitable Foundation, the Sontag Foundation and the Kimmel Foundation.

About the University of Minnesota Medical School

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

University of Minnesota Medical School

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.