Researchers discover a link between two important products of nitric oxide

October 04, 2019

Ever since three US-based researchers working independently unveiled the role of nitric oxide in mediating blood vessel dilation, endothelial cell contraction and smooth muscle relaxation, their discoveries have served as a basis for novel treatments for high blood pressure and erectile dysfunction, among other conditions.

The Nobel Prize in Physiology or Medicine in 1998 was awarded jointly to Robert F. Furchgott, Louis J. Ignarro and Ferid Murad for groundbreaking research of nitric oxide conducted during the 1970s and 1980s. Their work paved the way for the development of redox biochemistry, an entirely new research field. Nitric oxide is a free radical that has been shown to play a key role in the body's defenses against tumors and bacteria, as well as in inflammatory and wound healing processes.

Like any biological molecule, nitric oxide is modified in organisms, and the resulting products also act on the body. Understanding how these products are formed in cells is important to the development of new medications designed to increase or decrease the effects of nitric oxide, depending on the condition that is to be treated.

In contrast with the prevailing belief before the discoveries made by Furchgott, Ignarro and Murad, free radicals such as nitric oxide are not necessarily toxic to cells. They are vital for the molecular signaling that maintains cellular homeostasis and are hazardous only at high concentrations.

In an article published in the journal Chemical Communications, scientists have revealed a hitherto unknown mechanism underlying the formation of nitroso thiols, which are important reaction products of nitric oxide. The group - comprising two researchers affiliated with the University of São Paulo Chemistry Institute (IQ-USP) in Brazil and a colleague at the University of California Santa Barbara (UCSB) in the US - found that this process occurs during the formation of dinitrosyl iron complexes (DNICs), which are also products of nitric oxide.

In previous research, whenever nitroso thiols and DNICs appeared together in experiments in cells, DNICs were thought to donate nitric oxide to thiols to convert them into nitroso thiols.

The group showed that the mechanism whereby DNICs are formed gives rise to thiyl radicals. Because these are also free radicals, they react with nitric oxide, and this reaction produces nitroso thiols.

"DNICS have been tested for several functions because they promote similar actions to nitric oxide. The issue is that DNICs are currently tested by trial and error, due to the lack of sufficient information to select those best suited for each desired biological action. Our research involves studying the characteristics of the different DNICs to determine which are most reactive, so that we can then model a specific complex, for example, as the basis for developing a vasodilatory or wound healing drug," said Daniela Ramos Truzzi, a professor at IQ-USP and the first author of the article.

The study was part of her postdoctoral research at IQ-USP and her research internship at UCSB, both of which were supported by São Paulo Research Foundation - FAPESP.

The research was conducted under the aegis of the Center for Research on Redox Processes in Biomedicine (REDOXOME) - one of the Research, Innovation and Dissemination Centers (RIDCs) supported by FAPESP - for which the principal investigator is Ohara Augusto, who is a Full Professor at IQ-USP and a co-author of the study. Peter C. Ford at UCSB acted as a supervisor abroad.


Many different complexes that are derived from nitric oxide are produced in cells, but DNICs are the most abundant. Their physiological roles include protein S-nitrosation (or nitrosylation), which is a post-translational modification during which nitric oxide attacks specific cysteine residues in proteins, forming S-nitroso thiol groups. S-nitrosation is a key mechanism for the regulation of various protein classes and influences many physiological processes.

The researchers could not determine exactly which compounds are derived from which reactions because of the intensity of intracellular activity, so they chose experimental parameters that were as close as possible to physiological conditions, while knowing in advance which elements were present.

They used electron paramagnetic resonance (EPR) to observe the reaction between iron II (ferrous) oxide, nitric oxide, and the low-molecular-weight thiols cysteine and glutathione. All are abundant in mammalian cells.

"The final compounds, in this case the DNICs, appeared after only a second. They form very rapidly," Truzzi explained. "We then started to study how these molecules bind and managed to determine the mechanisms of formation. To our surprise, we found that thiyl radicals were also produced along with DNICs."

Radicals often react with each other, and thiyl radicals naturally react with nitric oxide. This reaction produced nitroso thiols.

"Nitroso thiols may be involved in cell signaling," he said. "In addition, high levels of nitroso thiols have been found to be correlated with the development of neurodegenerative diseases and cancer."

New studies will be performed with other thiols to see if the effect recurs and to confirm the discovery.

"REDOXOME focuses on metabolic and cardiovascular diseases, but it is important to understand the mechanistic details in order to be able to intervene in the processes of interest, and that is our main research aim in this instance," Augusto said.
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at and visit FAPESP news agency at to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Neurodegenerative Diseases Articles from Brightsurf:

Bringing drugs to the brain with nanoparticles to treat neurodegenerative diseases
Researchers from the Institut national de la recherche scientifique (INRS) have shown that nanoparticles could be used to deliver drugs to the brain to treat neurodegenerative diseases.

First 'pathoconnectome' could point toward new treatments for neurodegenerative diseases
Scientists from the John A. Moran Eye Center at the University of Utah have achieved another first in the field of connectomics, which studies the synaptic connections between neurons.

Unlocking the mystery of tau for treatment of neurodegenerative diseases
A team of researchers from various collaborating universities and hospitals in Japan has uncovered crucial molecular details regarding the activity of the ''tau'' protein, promising to revolutionize the therapy of tau-induced neurodegenerative diseases.

Investigational drug stops toxic proteins tied to neurodegenerative diseases
An investigational drug that targets an instigator of the TDP-43 protein, a well-known hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), may reduce the protein's buildup and neurological decline associated with these disorders, suggests a pre-clinical study from researchers at Penn Medicine and Mayo Clinic.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases

New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.

Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.

Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.

Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.

Read More: Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to