Novel laser-thermal mechanism realizes ultra-fast construction of PDMS devices

October 04, 2020

Researchers at Seoul National University in South Korea reported the development of new laser-based polydimethylsiloxane (PDMS) processing mechanism that enables the mask-less direct fabrication of various PDMS structures. This novel technology, named successive laser pyrolysis (SLP), provides an elegant alternative for conventional soft lithography, which is labor-intensive and time-consuming, by utilizing a newly discovered laser-guided successive pyrolysis phenomenon.

To date, the fabrication of various types of PDMS devices heavily relies on soft lithography. The complicated multi-step procedures, necessitating photolithography, however, draws substantial inefficiency to the associated research environments. Especially to the field engineers, the frequent design modification at the early research stage and subsequent repetition of the complex process was a significant burden. To remedy the situation, several researchers focused on the direct laser patterning of PDMS. However, the transparency of PDMS frustrated the attempts based on laser technique. Although UV laser-based ablation of PDMS, which can overcome the transparency of PDMS, was tried, the result has not reached the level of practical use mostly due to the poor surface topographies like burrs, debris, and fractured surfaces. For these reasons, the development of a non-ablative laser technology that enables high-quality PDMS processing has been an old challenge.

The recent paper published in Nature Materials on August 17 introduces the first-ever successful development of non-ablative direct laser machining of PDMS that enables a practical level of processing quality. Firstly, the paper describes the principle of 'laser-guided successive pyrolysis' that resembles the chain reaction; the opaque product of pyrolyzed PDMS (SiC) promotes enhanced laser absorption leading to the initiation of the next pyrolysis. As a result, the PDMS pyrolysis can proceed continuously along the contour of laser scanning without any special modification of PDMS. Based on this process principle, the researchers demonstrated the direct forming of various 2D and 3D PDMS structures starting from a PDMS monolith remarkably in a dramatically reduced processing time.

Professor Seung Hwan Ko, who led the research, said: "This new technique paves a shortcut to bridge a bare idea of PDMS devices in researcher's mind to a tangible device within a significantly reduced process time of less than 30 min in most cases." Compared to the conventional process that takes at least one day, such a reduction in process time, in addition to excellent processing quality, is expected to have a practical impact on researchers in relevant fields. As a next step, the research team are paying special attention to the grafting of this technology toward the development of Organ-on-a-chip.
-end-
This work was funded by the Ministry of Science and ICT, South Korea; by Seoul National University (SNU)

Seoul National University

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.