All-2D light-emitting field-effect transistors

October 04, 2020

Transition metal dichalcogenides (TMDs), a two-dimensional (2D) semiconductor, are promising materials for next-generation optoelectronic devices. They can emit strong light due to the large binding energies of excitons, quasiparticles composed of electron-hole pair, as well as an atomically thin nature. In existing 2D light emitting devices, however, the simultaneous injection of electrons and holes into 2D materials has been challenging, which results in low light emission efficiency. To overcome these problems, Prof. Gwan-Hyoung Lee's group in Seoul National University and Prof. Chul-Ho Lee's group in Korea University demonstrated all-2D light-emitting field-effect transistors (LEFETs) by staking 2D materials. They chose graphene and monolayer WSe2 as contact electrode and an ambipolar channel, respectively. Typically, a junction between metal and semiconductor has a large energy barrier. It is the same at a junction of graphene and WSe2. However, Lee group utilized the barrier-tunable graphene electrode as a key for the selective injection of electrons and holes. Since the work function of graphene can be tuned by an external electric field, the contact barrier height can be modulated in the graphene-contacted WSe2 transistor, enabling selective injection of electrons and holes at each graphene contact. By controlling the densities of injected electrons and holes, the high efficiency of electroluminescence as high as 6% was achieved at room temperature. In addition, it was demonstrated that, by modulating the contacts and channel with separate three gates, the polarity and light emission of LEFETs can be controlled, showing great promises of the all-2D LEFETs in multi-digit logic devices and highly integrated optoelectronic circuitry.

This research is published as a paper entitled "Multi-operation mode light-emitting field-effect transistors based on van der Waals heterostructure" in Advanced Materials.
Participating researchers: Junyoung Kwon (Yonsei University, Current : Samsung Advanced Institute of Technology (SAIT)), June-Chul Shin, Huije Ryu (Seoul National University), Jae Yoon Lee (Korea University), Dongjea Seo (University of Minnesota) Kenji Watanabe, Takashi Taniguchi (National Institute for Materials Science) Young Duck Kim (Kyung Hee University), James Hone (Columbia University), Chul-Ho Lee (Korea University, Corresponding Author) Gwan-Hyung Lee (Seoul National University; Corresponding Author)

This work was supported by National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning by the Korean government (2018M3D1A1058793, 2019R1F1A1058420, 2017R1A5A1014862) and Elemental Strategy Initiative conducted by the MEXT, Japan

Seoul National University

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to