MSX Instruments Observe Small Magellanic Cloud

October 04, 1996

The Science Team for the Midcourse Space Experiment (MSX) -- a Ballistic Missile Defense Organization satellite launched in April -- has obtained two unique images of the Small Magellanic Cloud (SMC), a small companion galaxy to our own galaxy, the Milky Way. The images represent at least a five-fold improvement in resolution and sensitivity over previous experiments.

These "first light" images were made with the MSX Spatial Infrared Imaging Telescope (SPIRIT III), built by the Space Dynamics Laboratory of Utah State University, and by the MSX Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI), built by The Johns Hopkins University Applied Physics Laboratory (JHU/APL).

Data collection was directed by the MSX Celestial Backgrounds Principal Investigator Team, led by Dr. Stephan D. Price of the U.S. Air Force Phillips Laboratory Geophysics Directorate. MSX Project Scientist is Dr. John D. Mill of the Environmental Research Institute of Michigan. MSX Chief Scientist is Dr. A.T. Stair, Jr., of Visidyne, Inc.

The images cover the same field of 3.5° by 3.5°. They are the first observations at the respective wavelengths to cover the entire galaxy at high sensitivity and good spatial resolution.

The images are available on the World Wide Web from the official MSX homepage at http://msx.nrl.navy.mil/, under the "Program News & Info: Press Releases" section. They are also available on the JHU/APL homepage at http://www.jhuapl.edu/, under the "PR" section. Color prints of the images can be obtained from the JHU/APL Public Affairs Office.

Image 1 is a 12 micron (bandpass 8-15 microns) image from the IRAS Sky Survey Atlas, until now the best infrared image of the SMC. The image has a resolution of approximately 4 to 5 arc minutes and contains four bright sources, two of which are in regions of extended emission in the densest part of the galaxy.

Image 2 is the MSX SPIRIT III radiometer Band A (6-11 microns) image of the SMC. The resolution is about 0.3 arc minutes (90 microradians). The extended source in the IRAS image is resolved into a rhomboid-shaped group of sources with no diffuse emission. This demonstrates that the markedly smaller footprint of SPIRIT III easily resolves background sources in a region with a high density of sources.

Image 3 is a visible image of the SMC, which appears as the faint semi-elliptical patch in the center. The image, with a resolution of approximately 0.1 arc minutes, was taken from the Palomar digitized survey of the region observed by MSX. Its fuzzy appearance is due to the high concentration of ordinary stars with similar brightness in the galaxy.

Image 4 is the MSX UVISI image. This is the first time the entire SMC has been imaged in the ultraviolet (from 200 to 300 nm). Since light in this wavelength range is absorbed by atmospheric ozone, images must be made from space. The UVISI instruments are uniquely designed to survey diffuse backgrounds and so have a footprint about 100 times larger than that of the Hubble Space Telescope. Many of the sources seen in the visible image are easily identifiable in the UVISI image. The major difference lies in the prominence given by UVISI to hot gas and stars. Comparisons such as this give astronomers valuable insight into the evolution of galaxies.

The infrared spectral region is ideal for observing cool sources and objects enshrouded in dust. Indeed, the "stars" in the infrared image either are ordinary stars, cool giant stars or stars embedded in circumstellar dust. The ultraviolet, on the other hand, more readily detects very hot stars, stars with surface temperatures in excess of 15,000°K, and nebulae which contain such hot objects.

MSX is the first system demonstration in space of technology to characterize ballistic missile signatures during the "midcourse" flight phase between booster burnout and missile reentry. During its five-year lifetime, MSX will detect, track, and discriminate realistic targets against terrestrial, Earth limb, and celestial backgrounds. The satellite's imaging capabilities will also support a wide variety of "dual-use" research involving global atmospheric change, astronomy, and space contamination and debris.

The observatory-class MSX satellite was launched on April 24, 1996, from Vandenberg Air Force Base, Calif., into a high-inclination, circular, near sun-synchronous Earth orbit at 561 miles (903.5 kilometers) altitude. Round-the-clock operations are being conducted from JHU/APL in Laurel, Md. All MSX sensors have completed on-orbit characterization and are now exceeding planned data return rates.

MSX management for BMDO includes Lt. Col. Bruce D. Guilmain, Program Manager, and Maj. Peter Kurucz, Deputy Program Manager. APL Program Manager is Mr. Max Peterson.

Principal investigators for the MSX mission are assigned according to major program experiment areas. In addition to Dr. Price, they include: Mr. Glenn Light, Early Midcourse; Mr. William T. Prestwood, Cooperative Targets; Dr. E. Michael Gaposchkin, Space Surveillance; Dr. Gerry J. Romick, Shortwave Terrestrial Backgrounds; Dr. O. Manuel Uy, Contamination; Dr. Thomas L. Murdock, Data Certification and Technology Transfer; and Mr. Robert R. O'Neil, Earthlimb/Auroral Backgrounds. The MSX program is supported by approximately 100 scientists from 30 institutions.

For more information, contact the BMDO External Affairs Office at (703) 695-8743, or Luther Young, JHU/APL Public Affairs, at (301) 953-6268 / luther.young@jhuapl.edu. MSX mission updates can be accessed at http://msx.nrl.navy.mil/

Johns Hopkins University Applied Physics Laboratory

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.