Lawrence Livermore Lab pioneers advanced radiation treatment for cancer

October 05, 2000

Nomos Corp. receives Food & Drug Administration clearance for new technology

LIVERMORE, Calif. -- Mankind will soon have another weapon in the 4,000-year fight against cancer. Clearance has been granted by the U.S. Food & Drug Administration for an advanced method for targeting tumors with radiation treatment developed by researchers at the U.S. Department of Energy's Lawrence Livermore National Laboratory.

Dubbed Peregrine -- after the patron saint of cancer patients -- the technology could eventually save thousands of lives each year by helping doctors direct more radiation at tumors, with minimal damage to surrounding healthy tissue.

NOMOS Corporation, a leading supplier of radiation treatment technologies located in Sewickley, PA recently received U.S. Food & Drug Administration clearance to produce and market Peregrine systems to the medical community.

Secretary of Energy Bill Richardson made the announcement today at NOMOS headquarters. "Peregrine could change the way cancer is treated in America," said Secretary Richardson. "This technology was developed through advances resulting from nuclear weapons research and with the multidisciplinary scientific expertise of a Department of Energy national laboratory. This is an excellent example of turning swords into plowshares."

Peregrine has been under development at Lawrence Livermore since 1994, in collaboration with researchers at the University of California, San Francisco and other academic institutions.

More Radiation Where It's Needed

Peregrine is a computer-based system for calculating, in three dimensions, where radiation goes in the body, and how much of it is striking tissue, bone or empty cavities. Peregrine will allow doctors to more accurately target tumors with radiation, permitting physicians to increase the dose needed to destroy tumors without increasing damage to healthy surrounding tissue. Each year, more than 100,000 cancer patients who are treated with radiation in hopes of a cure die with active tumors at the primary cancer site. Improved dose calculations using Peregrine could help doctors more effectively attack such tumors.

"Peregrine will touch lives," said Christine Hartmann Siantar, the Livermore Lab's principal Peregrine researcher. "It is a breakthrough technology that can be used in treatment clinics everywhere." John A. Friede, Chairman, President and Chief Executive Officer of NOMOS Corporation, said, "The combined efforts of the NOMOS and LLNL Peregrine teams to compile the data necessary to obtain FDA clearance has been extraordinary."

"We can now offer this unparalleled technology to doctors and clinicians who can provide 'better medicine' for cancer patients, underscoring our commitment to improving the treatment of cancer as well as the lives of cancer patients throughout the world."

Monte Carlo Improves The Odds

Peregrine combines Livermore's almost 50 years of radiation physics expertise with advanced computer architectures to produce a system that determines radiation dose information in minutes.

Peregrine relies on a mathematical technique called Monte Carlo to track radiation. It simulates the trillions of radiation particles that enter the body during treatment and accurately predicts radiation dose. Peregrine uses individual patient CT scans to tailor precise radiation dose calculations for each patient, based on each patient's distinct anatomy and disease. Researchers at the University of California, San Francisco worked closely with Livermore scientists during development and validation of Peregrine. "Our collaboration convinced us that this program will be able to accurately predict dose distributions for the most complex intensity modulated radiotherapy plans," said Lynn Verhey, Ph.D., professor and Vice-Chair, Department of Radiation Oncology, UCSF. "The Peregrine program will allow us to use the system clinically to plan and deliver these radiotherapy plans with greater confidence."

Multi-Disciplinary Capability Produced Peregrine

Making Peregrine a reality required the expertise of Livermore researchers from a number of disciplines, including physicists, computer scientists and electrical engineers.

"We're extremely pleased to be able to advance science in an area of great human significance," said Jeff Wadsworth, Livermore's deputy director for Science and Technology. "That's what Lawrence Livermore is all about."

NOMOS' initial deployment of Peregrine will be incorporated into its own inverse treatment planning system, called CORVUS, and will be showcased at the upcoming meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO) scheduled to be held in Boston, October 22-26. A stand-alone version of Peregrine will subsequently be developed to work with other treatment planning systems, making its unmatched capability and accuracy available to every cancer patient.

City of Hope Cancer Center in Los Angeles will be one of the first organizations to use Peregrine. "We are excited that we will be able to offer our patients the latest in radiation therapy technology," said Jeffrey Wong, M.D., Chair, Division of Radiation Oncology, City of Hope. NOMOS Corporation is the world's leading supplier of planning and delivery technology for intensity modulated radiation therapy (IMRT). NOMOS introduced IMRT, which has been described as the most significant breakthrough in cancer therapy in the past 30 years, to the oncology industry in 1992. The company is also a leading supplier of 3-D planning systems. To find out more about NOMOS and its treatment planning and delivery products, visit the NOMOS website at Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy. More information on Peregrine can be found at
Note: Reporters may arrange interviews with UCSF's Lynn Verhey by contacting Kevin Boyd at 415-476-8429. Interviews with NOMOS personnel can be arranged by calling Judy Hale at 724-934-8294. Interviews with Jeffrey Wong, M.D., City of Hope are available by calling Taylor Mayo or Kevin Koga at 800-888-5323. Laboratory news releases and photos are also available electronically on the World Wide Web of the Internet at URL and on UC Newswire.

DOE/Lawrence Livermore National Laboratory

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to