First ever Nanobiology Conference will be held at Emory University

October 05, 2001

The first-ever Nanobiology Conference will bring 70 of the world's most authoritative life scientists, physical scientists and engineers from around the world to Emory University on Oct. 25- 27 to discuss the latest developments in understanding the physics of biological processes at the nanometer scale. The goal of the conference is to see how biology works at the nanometer scale and how biological molecular machines made of a few molecules can be duplicated. Emory physics Professor Fereydoon Family, Professor C. Miguel Arizmendi of the Universidad Nacional de Mar del Plata in Argentina, and Professor Tamás Vicsek, head of biological physics at Eötvös University in Hungary are organizing the conference.

Nanotechnology is the design and creation of machines and devices out of a few atoms and small molecules-devices that are roughly the size of a nanometer, a billionth of a meter. A million nanoscale devices can fit on a single dot on a page. Nanodevices have innumerable technological applications. Some function like tiny machines, such as motors and pumps and other mechanical devices that can transport and manipulate things. Some act as extremely tiny, but powerful, electronic and chemical appliances like computers, lasers and storage devices.

The conference is expected to impact the field of nanotechnology as scientists introduce novel nanoscale structures that can be fabricated or self-assembled as well as explain the dynamics of nanoscale biological motors and machines. "We need to understand the physics of nanoscale machines and how they operate under different conditions," said Family. "Scientists cannot just build these structures randomly and hope that they will function properly."

Family's team of researchers at Emory have been working to find out how nature works at the nanoscale, particularly how transport takes place in biological systems at the nanoscale.

Nature already makes great use of nanotechnology, according to Family. "Nature has elegantly endowed each cell with a network of highways made of polymerized proteins along which nanoscale robots and molecular motors are busy at work delivering energy, carrying food to where it is needed, transporting waste out of the system, and defending the cell and its components against outside influences.

"What is actually happening in biological systems at the nanoscale is truly amazing and quite counterintuitive," said Family. "Inside a cell, a molecular motor is continuously bombarded by the random forces of water molecules hitting it from all directions. How can this molecule move so precisely inside a cell and do what it does? The laws of physics would say that under such a noisy condition the molecule would be pushed around and made to go back and forth, but on average it will stay where it is. But what allows the nanoscale motor to move in a particular direction is that the system goes out of equilibrium so that random noise has been changed to a deterministic motion."

The situation gets even worse for the nanoscale motor. "It is easy to realize that not only are these molecular motors being pushed around by a hail of random forces, they also are often moving in a rugged landscape, a landscape with irregular hills and mountains. What we have discovered is that this adds a nonlinear force to the dynamics of the motion of the molecule, so that tiny perturbations throw the system into a chaotic state. How does nature avoid this trap? Why don't biological molecular motors move chaotically?" The answer Family found was in the synchronization of the inherent frequency of the motion of the molecule and the external noise. "There is in fact an extremely robust range of parameters in which the system can be easily controlled back into regular motion.

"The impact of nanodevices in medicine will be revolutionary," said Family. "There will be new generations of prosthetic and medical implants whose surfaces are molecularly designed to interact with the body. Especially designed molecules will react with the body fluids to regenerate bone, skin and other damaged tissues or act on plaques in the brain to fight against buildup of amyloid deposits and Alzheimer's disease. The work we're doing to discover the physics of nanobiology will help take us there."


Emory University Health Sciences Center

Related Nanoscale Articles from Brightsurf:

Nanoscale machines convert light into work
Researchers have developed a tiny new machine that converts laser light into work.

Discovery will allow more sophisticated work at nanoscale
The movement of fluids through small capillaries and channels is crucial for processes ranging from blood flow through the brain to power generation and electronic cooling systems, but that movement often stops when the channel is smaller than 10 nanometers.

Valley-Hall nanoscale lasers
Topological photonics allows the creation of new states of light.

Dynamics of DNA replication revealed at the nanoscale
Using super-resolution technology a University of Technology Sydney led team has directly visualised the process of DNA replication in single human cells.

House cleaning on the nanoscale
A team of scientists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) has developed a novel mechanical cleaning method for surfaces on the nanoscale.

As electronics shrink to nanoscale, will they still be good as gold?
As circuit interconnects shrink to nanoscale, will the pressure caused by thermal expansion when current flows through wires cause gold to behave more like a liquid than a solid -- making nanoelectronics unreliable?

A joint venture at the nanoscale
Scientists at Argonne National Laboratory report fabricating and testing a superconducting nanowire device applicable to high-speed photon counting.

Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.

Creating a nanoscale on-off switch for heat
Researchers create a polymer thermal regulator that can quickly transform from a conductor to an insulator, and back again.

Magnetic tuning at the nanoscale
Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are working to produce engineered magnetic nanostructures and to tailor material properties at the nanoscale.

Read More: Nanoscale News and Nanoscale Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to