Gravitational lens helps Hubble and Keck discover galaxy building block

October 05, 2001

A very small, faint galaxy -- possibly one of the long sought "building blocks" of present-day galaxies -- has been discovered by a collaboration between NASA's Hubble Space Telescope and the 10-meter Keck Telescopes at a tremendous distance of 13.4 billion light-years (based on the estimate of 14 billion years as the age of the universe). The discovery was made possible by examining small areas of the sky viewed through massive intervening clusters of galaxies. These act as a powerful gravitational lens, magnifying distant objects and allowing scientists to probe how galaxies assemble at very early times. This has profound implications for our understanding of how and when the first stars and galaxies formed in the universe.

A team of American and European scientists conducting a unique, systematic search for very distant objects, among the most distant known, using the Hubble Space Telescope and the Keck Telescopes, and benefiting from the magnifying power of a foreground giant cluster of galaxies, has discovered one of the smallest and most distant galaxies known to date, pushing both telescopes to their limits.

Abell 2218 is a rich galaxy cluster composed of thousands of galaxies and a mass equivalent to ten thousand galaxies interspersed throughout the cluster. The cluster is located relatively nearby -- at a distance of 2 billion light-years (a redshift of 0.18). Redshift is the stretching of light waves as they travel across expanding space. The longer they travel, the more they are stretched, and the higher the measured redshift.

The gravitational field from this huge concentration of matter distorts and magnifies the light from distant galaxies according to Einstein's General Theory of Relativity. Gravitational lenses, the equivalent of nature's magnifying glasses in space, give researchers a unique tool with which to learn more about the detailed physics of the first galaxies in the universe.

The recently discovered "baby galaxy" has a redshift of 5.58, corresponding to a distance of about 13.4 billion light-years. The galaxy's light has been magnified more than 30 times by Abell 2218 and split into two "images" by the uneven distribution of matter in the cluster.

The international team, led by Richard Ellis from the California Institute of Technology (Caltech) in Pasadena, CA, determined the amount of matter in the object to be astoundingly low for a galaxy -- only a few million times the mass of our Sun, or about one hundred thousand times less than the amount of matter in our own Milky Way galaxy. The object is only around 500 light-years across, as compared to the 100,000 light-year diameter of the Milky Way.

Many galaxy clusters were investigated before such a clear-cut candidate for a very distant galaxy building block was found. Images taken from the Hubble archive and spectroscopy carried out by one of the ground-based Keck Telescopes revealed that this galaxy is one of the most distant found so far.

Ellis explains, "Without the benefit of the powerful cosmic lens, the source would not even have been detected in the Hubble Deep Fields, historic deep exposures taken with the Hubble Space Telescope in 1995 and 1998."

Jean-Paul Kneib from the Observatoire Midi-Pyrenees, France, an expert in gravitational lensing, describes the excitement of the team: "It took two observing runs with the Keck Telescope before we had gathered enough light from this feeble object to determine its distance and thus confirm the discovery. When we realized what we had found, we literally jumped up and down."

Research team member Konrad Kuijken from the Kapteyn Institute, the Netherlands continues, "We are very excited. We are looking at something very small and very young. A two million year old, one million solar mass, galaxy-like object consisting of young hot stars is the best fit to the observations. We believe it is one of the galaxy building blocks that join together and make up larger galaxies later in the history of the universe. With this discovery, we may finally be witnessing the circumstances in which this first generation of stars was born."

The first galaxies in the universe hold invaluable clues that shed light on the period known as the cosmic "Dark Ages," a period that lasted possibly up to one billion years after the Big Bang and ended when the first generation of stars appeared.

The Next Generation Space Telescope (NGST) is being designed to routinely look for these very first stars. NASA's Project Scientist at Goddard Space Flight Center, John Mather, states, "The NGST science teams have always planned to use these lenses to look as far as possible back towards the very first objects, but they don't cover much of the sky. Finding and characterizing them in advance of NGST's launch around 2009 will be a very important step towards the ultimate gravitational telescope."
The team's research paper will appear in the Astrophysical Journal Letters.

Credit: NASA, ESA, Richard Ellis (Caltech, USA) and Jean-Paul Kneib
(Observatoire Midi-Pyrenees, France)

NOTE TO EDITORS: For additional information, please contact
Richard Ellis
Caltech, Pasadena, CA
Phone: +1 626-395-2598

Jean-Paul Kneib
Observatoire Midi-Pyrenees, Toulouse, France
Phone: +33-5-61-33-28-24 and +33-5-61-33-29-29 (05 in France)

Konrad Kuijken
Kapteyn Institute, Groningen, the Netherlands
Phone: +31-50-363-4055/4073

Electronic images files associated with this release are available on the Web at: and via links in and

Members of the team of scientists include: Jean-Paul Kneib
(Observatoire Midi-Pyrenees, France), Richard Ellis, Mike Santos
(both Caltech) and Konrad Kuijken (Kapteyn Institute, the Netherlands).

This news release is issued jointly by NASA, ESA, Caltech/the W.M. Keck Observatory and NOVA (the Netherlands Research School for Astronomy).

The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). The W.M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA.

Acknowledgments: The original images of Abell 2218 were obtained by A. Fruchter and the ERO Team (STScI, ST-ECF) as part of the Hubble Servicing Mission 3A Early Release Observations.

To receive STScI press releases electronically, send an Internet electronic mail message to Leave the subject line blank, and type the word subscribe in the body of the message. The system will respond with a confirmation of the subscription, and you will receive new press releases as they are issued. Please subscribe using the email account with which you would like to receive list messages. To unsubscribe, send mail to Leave the subject line blank, type the word unsubscribe in the body of the message. Please unsubscribe using the email account that you used to subscribe to the list.

Lars Lindberg Christensen
Hubble European Space Agency Information Centre, Garching, Germany
Phone: +49-89-3200-6306 (089 in Germany)
Cellular (24 hr): +49-173-38-72-621 (0173 in Germany)

Robert Tindol
California Institute of Technology (Caltech), Pasadena, CA
Phone: 626-395-3631; E-mail:

James Beletic
W.M. Keck Observatory, Kamuela, HI
Phone: 808-885-7887; E-mail:

Space Telescope Science Institute

Related Hubble Space Telescope Articles from Brightsurf:

Spitzer space telescope legacy chronicled in Nature Astronomy
A national team of scientists Thursday published in the journal Nature Astronomy two papers that provide an inventory of the major discoveries made possible thanks to Spitzer and offer guidance on where the next generation of explorers should point the James Webb Space Telescope (JWST) when it launches in October 2021.

Unveiling rogue planets with NASA's Roman Space Telescope
New simulations show that NASA's Nancy Grace Roman Space Telescope will be able to reveal myriad rogue planets - freely floating bodies that drift through our galaxy untethered to a star.

Hubble makes the first observation of a total lunar eclipse by a space telescope
Taking advantage of a total lunar eclipse, astronomers using the NASA/ESA Hubble Space Telescope have detected ozone in Earth's atmosphere.

Stunning space butterfly captured by ESO telescope
Resembling a butterfly with its symmetrical structure, beautiful colours, and intricate patterns, this striking bubble of gas -- known as NGC 2899 -- appears to float and flutter across the sky in this new picture from ESO's Very Large Telescope (VLT).

Hubble marks 30 years in space with tapestry of blazing starbirth
NASA is celebrating the Hubble Space Telescope's 30 years of unlocking the beauty and mystery of space by unveiling a stunning new portrait of a firestorm of starbirth in a neighboring galaxy.

CHEOPS space telescope ready for scientific operation
CHEOPS has reached its next milestone: Following extensive tests in Earth's orbit, some of which the mission team was forced to carry out from home due to the coronavirus crisis, the space telescope has been declared ready for science.

Scientists build a 'Hubble Space Telescope' to study multiple genome sequences
Scientists can now simultaneously compare 1.4 million genetic sequences, helping classify how species are related to each other at far larger scales than previously possible.

Kepler Space Telescope's first exoplanet candidate confirmed
An international team of astronomers announced the confirmation of the first exoplanet candidate identified by NASA's Kepler Mission.

Space telescope detects water in a number of asteroids
Using the infrared satellite AKARI, a Japanese research team has detected the existence of water in the form of hydrated minerals in a number of asteroids for the first time.

The Hubble Space Telescope discovers the most distant star ever observed
An international team, including researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL), participated in the discovery of a star at a distance of nine billion lightyears from Earth.

Read More: Hubble Space Telescope News and Hubble Space Telescope Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to