Running not swimming or biking is best kind of loading exercise for childrens bone growth

October 05, 2004

Austin, Texas (Oct. 6, 2004) -- Mechanical loading through exercise builds bone strength and this effect is most pronounced during skeletal growth and development, according to Charles H. Turner, professor in the Department of Orthopaedic Surgery and director of orthopaedic research at the Indiana University School of Medicine, Indianapolis.

Exercise that puts the "best" kind of mechanical load to strengthen bones, especially during childhood and adolescence, Turner says, involves impact or high rates of load such as running or jumping, as opposed to swimming or biking. Growing bones are most responsive to the strengthening effects of running/jumping, which have the additional benefit that these types of exercise don't affect longitudinal growth, Turner says.

Activities like "serious weight-lifting, however, aren't recommended for children because overloading growing joints can stunt longitudinal bone growth," and consequently stunt overall limb growth and height, he adds.

Turner says that the strengthening effect of exercise is very efficient because the cellular mechanosensors within bone direct osteogenesis (new bone growth) to where it is most needed to improve bone strength and hence bone mass.

Editors note: Turner is reporting his findings at the American Physiological Society's 2004 Intersociety Meeting, "The Integrative Biology of Exercise," Oct. 6-9 in Austin.

The schedule for the exercise meeting can be found at (http://www.the-aps.org/meetings/aps/austin/tentative.pdf). The complete program, including abstracts, for the entire meeting is available upon request to members of the media.

Arrangements for on-site interviews, or telephone interviews during the meeting can be arranged through APS Communications Officer Mayer Resnick (cell: 301-332-4402, mresnick@the-aps.org) or through Stacy Brooks, APS Communications Specialist, 301-634-7253). From Oct. 6 (2 p.m.) - Oct. 9, the onsite phone number in Austin is 512-482-8000, room 602, or direct dial: 512-682-2950.

The meeting is cosponsored by APS, the American College of Sports Medicine and the Canadian Society for Exercise Physiology. Additional support through unrestricted educational grants came from: the National Aeronautics and Space Administration (NASA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMSD), Gatorade Sports Sciences Institute, Pfizer Inc. and the U.S. Army Research Institute of Environmental Medicine (USARIEM).

Mechanosensors, desensitization under study

Though the cellular mechanosensors are very efficient, Turner noted that the biological processes involved in bone mechanotransduction are poorly understood, "yet several pathways are emerging from current research." These include ion channels in the cell membrane, ATP (adenosine triphosphate) signaling, and second messengers such as prostaglandins and nitric oxide. Specific targets of mechanical loading include the L-type calcium channel (alpha 1C isoform), a gadolinium-sensitive stretch-activated channel, P2Y2 and P2X7 purinergic receptors, EP2 and EP4 prostanoid receptors, and the parathyroid hormone receptors.

"One characteristic of the mechanosensing apparatus that has only recently been studied is the important role of desensitization," Turner notes. "Experimental protocols that insert 'rest' periods to reduce the effects of desensitization can double anabolic responses to mechanical loading," he adds. Again, it's unclear how desensitization of bone cells occur, but it's an area ripe for further study.

A recent paper with his colleague, Alexander G. Robling, "Designing exercise regimens to increase bone strength," dealt with desensitization and age-related effects of exercise, among many other topics, including development of an exercise "osteogenic index" or OI. The paper appeared in the "Exercise and Sport Sciences Reviews." Among the OI observations were: (1) "short intense exercise bouts build bone most effectively, hence short sprints should build more bone than a long jog," (2) "OI is best improved by adding more exercise sessions per week rather than lengthening the duration of individual sessions," (3) "to reduce exercise time, it is far better to shorten each session than to reduce the number of sessions," and (4) "the osteogenic potential of exercise can be increased further when daily exercise is divided into two shorter sessions separated by 8 hours."
-end-
The American Physiological Society was founded in 1887 to foster basic and applied bioscience. The Bethesda, Maryland-based society has more than 10,000 members and publishes 14 peer-reviewed journals containing almost 4,000 articles annually.

APS provides a wide range of research, educational and career support and programming to further the contributions of physiology to understanding the mechanisms of diseased and healthy states. In May, APS received the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM).

American Physiological Society

Related Bone Growth Articles from Brightsurf:

New drug shown to improve bone growth in children with achondroplasia
A phase three global clinical trial led by the Murdoch Children's Research Institute (MCRI) has shown that the drug vosoritide restores close-to-average bone growth rates of children with achondroplasia, the most common form of dwarfism.

NIH researchers discover gene for rare disease of excess bone tissue growth
Researchers at the National Institutes of Health have discovered a second gene that causes melorheostosis, a rare group of conditions involving an often painful and disfiguring overgrowth of bone tissue.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

Bad to the bone: Specific gut bacterium impairs normal skeletal growth and maturation
Bone mass accrual is regulated by the gut microbiome as well as by diet and exercise.

Bone regrowth using ceramic substitute and E. coli-derived growth factors
Synthetic bone substitutes are promising materials for bone defect repair, but their efficacy can be substantially improved by bioactive agents such as growth factors.

Addition of growth factors to unique system helps new bone formation
New technique aids bone formation.

'Bone in a dish' opens new window on cancer initiation, metastasis, bone healing
Researchers in Oregon have engineered a material that replicates human bone tissue with an unprecedented level of precision, from its microscopic crystal structure to its biological activity.

UCI team pioneers cancer treatment that targets bone metastases while sparing bone
University of California, Irvine researchers have developed and tested on mice a therapeutic treatment that uses engineered stem cells to target and kill cancer bone metastases while preserving the bone.

Study shows experimental drug can encourage bone growth in children with dwarfism
Researchers at Johns Hopkins Medicine, the Murdoch Children's Research Institute in Australia and seven other medical institutions report that an experimental drug called vosoritide, which interferes with certain proteins that block bone growth, allowed the average annual growth rate to increase in a study of 35 children and teenagers with achondroplasia, a form of dwarfism.

Replicating fetal bone growth process could help heal large bone defects
To treat large gaps in long bones, like the femur, which often can result in amputation, researched developed a process in a rodent model that partially recreates the bone growth process that occurs before birth.

Read More: Bone Growth News and Bone Growth Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.