New possibilities for flu antiviral and vaccine research emerge from 'Spanish flu' virus

October 05, 2005

The 1918 Spanish flu was a global disaster, killing an estimated 20 to 50 million people, many of them otherwise healthy adults. By partially reconstructing the Spanish flu virus, researchers have now discovered at least part of what made the virus so lethal, thus providing essential information for influenza drug and vaccine research.

The research appears in the 7 October issue of the journal Science, published by AAAS, the nonprofit science society.

The Spanish flu virus is more closely related to avian flu viruses than other human flu viruses. Many experts say that it is only a matter of time before an avian flu outbreak occurs in humans and develops into a global pandemic, potentially costing millions of lives.

Therapies against a new flu strain would need to disarm the parts of the virus that do the most damage to the body. In order to learn which components of the virus would be the best targets for such therapies, Terrence Tumpey of the Centers for Disease Control and Prevention and his colleagues revisited the 1918 Spanish flu virus.

Their results may also provide a benchmark for measuring the potential virulence of future flu strains as they emerge.

Using the virus' genome sequence, whose final three genes are being published simultaneously this week in Nature, Tumpey's group created a live virus with all eight of the Spanish flu viral genes. The genome sequence information was recovered in fragments from lung autopsy materials and lung tissues from a flu victim who was buried in the Alaskan permafrost in 1918.

The virus is contained at the Centers for Disease Control and Prevention (CDC), following stringent safety conditions designated for flu viruses and heightened security elements mandated by the CDC's Select Agent program.

"We felt we had to recreate the virus and run these experiments to understand the biological properties that made the 1918 virus so exceptionally deadly. We wanted to identify the specific genes responsible for its virulence, with the hope of designing antivirals or other interventions that would work against virulent pandemic or epidemic influenza viruses," said Tumpey.

"Science is publishing this study because it provides information necessary for developing drugs and vaccines that could help prevent another global flu pandemic. We carefully considered the implications of publishing this research and concluded that the knowledge we're gaining to potentially protect public health far outweighs the risk of working with this virus," said Donald Kennedy, editor-in-chief of Science.

"We were comforted to learn that this also was the conclusion of Dr. Anthony Fauci of the U.S. National Institute of Allergy and Infectious Diseases, Dr. Julie Gerberding of the Centers for Disease Control and Prevention, and Dr. Amy Patterson of the Office of Biotechnology Activities within the Office of Science Policy at the U.S. National Institutes of Health. Dr. Patterson is the spokesperson for the National Science Advisory Board for Biodefense (NSABB), which provides guidance and advice on the implications for dual use research and publication," Kennedy said.

To make the virus, the researchers used an approach called "reverse genetics," which involves transferring gene sequences of viral RNA into bacteria and then inserting combinations of the genes -- often after manipulating them -- into cell lines, where they combine to form a virus.

For the Science study, Jeffery Taubenberger of the Armed Forces Institute of Pathology provided the coding sequences for the eight Spanish flu genes to Christopher Basler, Peter Palese, Adolfo García-Sastre and their colleagues at the Mount Sinai School of Medicine. They spliced these sequences together with noncoding DNA from a closely related virus, since this portion of the genome wasn't available for the Spanish flu virus.

Then, they sent the bacteria containing the viral gene sequences to Tumpey, who inserted them into the cells to produce the virus.

The researchers also produced variations of the virus for comparison, with certain Spanish flu genes replaced by the corresponding genes from other flu viruses. Then they studied the viruses' effects in mice, chick embryos and human lung cells and identified the constellation of genes that was responsible for the Spanish flu virus' extreme virulence.

One gene associated with high virulence was the HA gene, which encodes the hemagglutinin surface protein that helps the virus attach to cells and replicate properly. This gene seemed to be responsible for much of the severe lung damage reported in people infected with the Spanish flu. The three genes encoding the viral "polymerase" enzymes, which form the virus' basic replication machinery, were also found to be important for high virulence.

"Given that HA is responsible for so much pathology in the lung, if we could identify the mechanism for how that happens and then block it, perhaps it would be useful for antiviral development. With the identification of the polymerase genes contributing to disease, that represents another set of genes that might also be a good target for prophylactic and therapeutic interventions," Tumpey said.

Although more research needs to be done on antivirals and vaccines for a future flu pandemic, Tumpey noted some encouraging signs. The FDA-approved flu antiviral drugs, oseltamivir and amantadine, have been shown to be effective against viruses carrying certain genes from the Spanish flu virus. And, vaccines containing the Spanish flu HA gene, as well as another gene from this virus, were protective in mice.
-end-
Tumpey's coauthors are Hui Zeng, Nancy J. Cox and Jacqueline M. Katz at the Centers for Disease Control and Prevention in Atlanta, GA; Christopher Basler, Patricia V. Aguilar, Alicia Solórzano, Peter Palese and Adolfo García-Sastre at Mount Sinai School of Medicine in New York, NY; Jeffery K. Taubenberger at the Armed Forces Institute of Pathology in Rockville, MD; David E. Swayne at the U.S. Department of Agriculture, in Athens, GA. The study was supported by the National Institutes of Health and the United States Department of Agriculture.

The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal, Science (www.sciencemag.org). AAAS was founded in 1848, and serves some 262 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of one million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

American Association for the Advancement of Science

Related Genome Sequence Articles from Brightsurf:

Two complete genome sequence for coronavirus in Brazil were published
With FAPESP's support, researchers at the University of São Paulo in Brazil, Adolfo Lutz Institute and Oxford University in the UK trained a laboratory team to use a low-cost sequencing technology even before the virus arrived in Brazil.

NYU scientists sequence the genome of basmati rice
Using an innovative genome sequencing technology, researchers assembled the complete genetic blueprint of two basmati rice varieties, including one that is drought-tolerant and resistant to bacterial disease.

Most complete commercial sugarcane genome sequence has been assembled
Based on the information obtained from this latest whole-genome sequencing effort, researchers at the USP are developing tools for the genetic improvement of sugarcane and testing several candidate genes in Genetically Modified (GM) plants.

American University researchers sequence genome of the 'devil worm'
American University researchers, reporting in Nature Communications, have sequenced the genome of a unique microscopic worm found one mile underground and called the 'Devil Worm' for its ability to survive in harsh, subsurface conditions.

Study presents first genome sequence of Florida panther
Once dwindling in numbers and suffering from the hereditary effects of inbreeding, the Florida panther is on the rebound, and researchers now have more genetic data to prove it.

Chinese scientists generate a high-quality wheat A genome sequence
A joint research team from the Institute of Genetics and Developmental Biology, BGI Shenzhen and Keygene in the Netherlands generated a high-quality genome sequence of T. urartu by combining BAC-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing and next-generation mapping technologies.

Genome sequence of a diabetes-prone rodent
Sequencing the genome of the sand rat, a desert rodent susceptible to nutritionally induced diabetes, revealed an unusual chromosome region skewed toward G and C nucleotides.

Sunflower genome sequence to provide roadmap for more resilient crops
University of Georgia researchers are part of an international team that has published the first sunflower genome sequence.

Genome sequence of fuel-producing alga announced
The genome of the fuel-producing green microalga Botryococcus braunii has been sequenced by a team of researchers led by a group at Texas A&M AgriLife Research.

Scientists reveal new and improved genome sequence of Daphnia pulex
By understanding how they respond to toxic elements, scientists can look at how environmental changes caused by agriculture and road runoff or warming temperatures and climate change could impact populations in lakes, rivers and standing bodies of water.

Read More: Genome Sequence News and Genome Sequence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.