Mother-of-pearl in highest resolution

October 05, 2005

Mother-of-pearl, also known as nacre, is not just an iridescent substance whose optical characteristics impress the observer and which is often used for jewellery. It is also an excellent material for working with. Nacre consists of 97 percent lime, but has a thousand times higher breaking strength. The reason has to do with the layer composition of mother-of-pearl. Now, Max Planck and BAM scientists have discovered that the surface of the lime platelets in mother-of-pearl is not at all ordered in layers, as had been previously assumed. Because of this fact, it can be ruled out that the crystals are controlled through ordered layers on the organic matrix. This understanding of nacre, and the mechanism by which it is built, is essential for emulating the same refined principle in building new materials.

For a long time, mother-of-pearl has been considered as an interesting biogenous material. During this time, researchers have been trying to understand its astounding characteristics. Its unusual breaking strength is due to a structure based on soft organic layers and hard lime platelets.

If we could only begin to copy this building principle, it would lead to a revolution in the construction industry. Possible goals for this kind of biomimetic materials research could be firmer gypsum plasterboard, or pieces of concrete with a lower weight but with the same strength. The lime platelets in nacre crystallise into aragonite - a crystal form which is normally not stable under ambient conditions. Until now, researchers had assumed that this crystallization of the lime platelets was determined by ordered layers of protein which lie on a pre-formed layer of chitin. Chitin can be found in nature, as for example a scaffolding material in the shells of insects.

But the latest findings of the Max Planck scientists have found these assumptions to be false. Instead of an ordered crystalline layer, which would be in contact with the organic matrix, the scientists found tiny - five nanometres thick - layers of amorphous - that, is disordered - calcium carbonate on the surface of the monocrystalline platelets in nacre.

This disordered and wavy surface provides evidence against the postulated specific interaction between the mineral material and the organic matrix. The finding could be clearly supported by 13C and 1H solid state nuclear magnetic resonance (NMR) spectroscopy. Furthermore, in NMR experiments the researchers detected the amorphous character of the surface layer and ruled out any interaction between it and the organic scaffolding.

The reason for the existence and development of the disordered upper layer on the crystal could be based upon the fact that impurities accumulate in the surface layer. In crystallization, these are not built into the ordered crystal lattice - similar to what happens in the process of zone melting in metallurgy.

The amorphous layer (ACC) could indeed have another function. It replaces the previously assumed direct interaction of the high energy (001) aragonite layer through a gradient layer made of aragonite, ACC, and organic matrix. The energies of the boundary layer could be significantly lower here, and thus a thermodynamic force could exist for the development of an amorphous upper layer. It is still not clear in which direction the crystallographic orientation of the platelet eventually moves. In the current study, the scientists have acted on the assumption that an electrostatic attraction exists between the inorganic platelets and the organic matrix.
-end-


Max-Planck-Gesellschaft

Related Crystal Articles from Brightsurf:

Getting single-crystal diamond ready for electronics
Researchers from Osaka University and collaborating partners polished single-crystal diamond to near-atomic smoothness without damaging it.

X-rays indicate that water can behave like a liquid crystal
Scientists at Stockholm University have discovered that water can exhibit a similar behavior like a liquid crystal when illuminated with laser light.

Photonic crystal light converter
Spectroscopy is the use of light to analyze physical objects and biological samples.

Higher-order topology found in 2D crystal
The research team took a new approach by using the Josephson junctions to spatially resolve the supercurrent flow and to show that WTe2 does indeed appear to have hinge states and be a higher-order topological insulator.

Hammer-on technique for atomic vibrations in a crystal
Vibrations of atoms in a crystal of the semiconductor gallium arsenide (GaAs) are impulsively shifted to a higher frequency by an optically excited electric current.

Crystal wars
Scientists at The University of Tokyo and Fudan University researched the process of crystallization in which competing structural forms coexist.

Melting a crystal topologically
Physicists at EPFL have successfully melted a very thin crystal of magnetic quasi-particles controllably, as turning ice into water.

The makings of a crystal flipper
Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions.

Crystal power
Scientists at the US Department of Energy's Argonne National Laboratory have created and tested a single-crystal electrode that promises to yield pivotal discoveries for advanced batteries under development worldwide.

Pressing 'pause' on nature's crystal symmetry
From snowflakes to quartz, nature's crystalline structures form with a reliable, systemic symmetry.

Read More: Crystal News and Crystal Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.