Nav: Home

Maximum human lifespan has already been reached, Einstein researchers conclude

October 05, 2016

October 5, 2016 -- (BRONX, NY) -- A study published online today in Nature by Albert Einstein College of Medicine scientists suggests that it may not be possible to extend the human life span beyond the ages already attained by the oldest people on record.

Since the 19th century, average life expectancy has risen almost continuously thanks to improvements in public health, diet, the environment and other areas. On average, for example, U.S. babies born today can expect to live nearly until age 79 compared with an average life expectancy of only 47 for Americans born in 1900. Since the 1970s, the maximum duration of life--the age to which the oldest people live--has also risen. But according to the Einstein researchers, this upward arc for maximal lifespan has a ceiling--and we've already touched it.

"Demographers as well as biologists have contended there is no reason to think that the ongoing increase in maximum lifespan will end soon," said senior author Jan Vijg, Ph.D., professor and chair of genetics, the Lola and Saul Kramer Chair in Molecular Genetics, and professor of ophthalmology & visual sciences at Einstein. "But our data strongly suggest that it has already been attained and that this happened in the 1990s."

Dr. Vijg and his colleagues analyzed data from the Human Mortality Database, which compiles mortality and population data from more than 40 countries. Since 1900, those countries generally show a decline in late-life mortality: The fraction of each birth cohort (i.e., people born in a particular year) who survive to old age (defined as 70 and up) increased with their calendar year of birth, pointing toward a continuing increase in average life expectancy.

But when the researchers looked at survival improvements since 1900 for people aged 100 and above, they found that gains in survival peaked at around 100 and then declined rapidly, regardless of the year people were born. "This finding indicates diminishing gains in reducing late-life mortality and a possible limit to human lifespan," said Dr. Vijg.

He and his colleagues then looked at "maximum reported age at death" data from the International Database on Longevity. They focused on people verified as living to age 110 or older between 1968 and 2006 in the four countries (the U.S., France, Japan and the U.K.) with the largest number of long-lived individuals. Age at death for these supercentenarians increased rapidly between the 1970s and early 1990s but reached a plateau around 1995--further evidence for a lifespan limit. This plateau, the researchers note, occurred close to 1997--the year of death of 122-year-old French woman Jeanne Calment, who achieved the maximum documented lifespan of any person in history.

Using maximum-reported-age-at-death data, the Einstein researchers put the average maximum human life span at 115 years--a calculation allowing for record-oldest individuals occasionally living longer or shorter than 115 years. (Jeanne Calment, they concluded, was a statistical outlier.) Finally, the researchers calculated 125 years as the absolute limit of human lifespan. Expressed another way, this means that the probability in a given year of seeing one person live to 125 anywhere in the world is less than 1 in 10,000.

"Further progress against infectious and chronic diseases may continue boosting average life expectancy, but not maximum lifespan," said Dr. Vijg. "While it's conceivable that therapeutic breakthroughs might extend human longevity beyond the limits we've calculated, such advances would need to overwhelm the many genetic variants that appear to collectively determine the human lifespan. Perhaps resources now being spent to increase lifespan should instead go to lengthening healthspan--the duration of old age spent in good health."
-end-
The Nature paper is titled "Evidence for a Limit to Human Lifespan." The co-lead authors of the paper are Xiao Dong, Ph.D., and Brandon Milholland, Ph.D., both at Einstein. The study was supported by National Institutes of Health grants AG017242 and AG047200, the Albert Einstein College of Medicine Institute for Aging Research/Nathan Shock Center and the Paul F. Glenn Center for the Biology of Human Aging at Albert Einstein College of Medicine.



About Albert Einstein College of Medicine


Albert Einstein College of Medicine is one of the nation's premier centers for research, medical education and clinical investigation. During the 2015-2016 academic year, Einstein is home to 731 M.D. students, 193 Ph.D. students, 106 students in the combined M.D./Ph.D. program, and 278 postdoctoral research fellows. The College of Medicine has more than 1,900 full-time faculty members located on the main campus and at its clinical affiliates. In 2015, Einstein received $148 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center--Einstein's founding hospital, and three other hospital systems in the Bronx, Brooklyn and on Long Island, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.

Albert Einstein College of Medicine

Related Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
Journal AAS publishes first data description paper: Data collection and sharing
AAS published its first data description paper on June 8, 2017.
73 percent of academics say access to research data helps them in their work; 34 percent do not publish their data
Combining results from bibliometric analyses, a global sample of researcher opinions and case-study interviews, a new report reveals that although the benefits of open research data are well known, in practice, confusion remains within the researcher community around when and how to share research data.
Designing new materials from 'small' data
A Northwestern and Los Alamos team developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
What to do with the data?
Rapid advances in computing constantly translate into new technologies in our everyday lives.
Why keep the raw data?
The increasingly popular subject of raw diffraction data deposition is examined in a Topical Review in IUCrJ.
Infrastructure data for everyone
How much electricity flows through the grid? When and where?
Finding patterns in corrupted data
A new 'robust' statistical method from MIT enables efficient model fitting with corrupted, high-dimensional data.
Big data for little creatures
A multi-disciplinary team of researchers at UC Riverside has received $3 million from the National Science Foundation Research Traineeship program to prepare the next generation of scientists and engineers who will learn how to exploit the power of big data to understand insects.

Related Data Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...