Nav: Home

Enzyme treatment of gene may reverse effects of Alzheimer's

October 05, 2016

For the last 20 years, researchers have focused on amyloid beta peptides and the "plaque" they sprout in diseased brains as the main target of Alzheimer's research. But the pace of progress in treating -- not to mention curing -- the debilitating, neurodegenerative disease has been painfully slow.

A Tel Aviv University study published last month in the Journal of Alzheimer's Disease suggests a new target for Alzheimer's research: the APOE gene. This gene, like Dr. Jekyll and Mr. Hyde, has two faces: a healthy form called APOE3 and a disease-related pathological form called APOE4. Researchers have developed a novel mechanism and approach with which to convert the "bad" APOE4 to the "good" APOE3.

The research was led by Prof. Daniel M. Michaelson, Director of the Eichenbaum Laboratory of Alzheimer's Disease Research and incumbent of the Myriam Lebach Chair in Molecular Neurodegeneration at TAU's Faculty of Life Sciences, together with Anat Boehm-Cagan, the Eleanore and Harold Foonberg Doctoral Fellow in Alzheimers Disease Research, and in collaboration with the commercial company Artery Ltd., based in California.

Focus on a new approach

"APOE4 is a very important and understudied target," Prof. Michaelson said. "It is expressed in more than 60 percent of Alzheimer's patients. Anti-APOE4 treatments are thus expected to have a major impact on the patient population.

"The normal APOE gene provides the interface that moves lipids -- naturally occurring molecules that include fats, cholesterol, fat-soluble vitamins and other components essential to the health of cells -- in and out of cells," Prof. Michaelson continued. "Whereas the healthy APOE3 does so effectively, the bad form -- APOE4 -- is impaired."

Prof. Michaelson and other groups found in past research that the bad APOE4 and the good APOE3 differed in their interactions with lipid cargo. The good APOE3, for example, is associated with substantially more lipids than APOE4.

The researchers devised an experimental approach to measure the "bad" features of APOE4, utilizing genetically manipulated mice expressing either good or bad forms of APOE. Mice with APOE4 exhibited impaired learning and memory, as well as damaged brain synapses and an accumulation of phosphorylated tau and a-beta molecules -- two pathological hallmarks of Alzheimer's.

Turning a bad gene to good

"Once this model was established and the pathological effects of APOE4 could be reproduced in mice, we could test therapeutic approaches and tackle APOE4 itself," Prof. Michaelson said. "Because we know that APOE4 carries fewer lipids, we looked at the means of counteracting the lipidation deficiency.

"We focused on an enzymatic machinery called ABCA1 that loads lipid cargo onto APOE4. We found that the impaired lipidation of APOE4 could be successfully reversed by activating ABCA1. Most importantly, we discovered that this increased lipidation of APOE4 reversed the behavioral impairments and brain damage seen in non-treated APOE4 mice."

The researchers found in the course of administering treatment that mice, which prior to the treatment exhibited disoriented behavior and seemed "lost," were able following treatment to locate a submerged island in the middle of an artificial pond. Mice had forgotten familiar objects -- like Coca Cola bottles -- suddenly exhibited sharp object recognition.

"Is there really a magic bullet? One treatment that covers all aspects of Alzheimer's? Not likely," said Prof. Michaelson. "Therefore there is a need to define specific subpopulations and to develop treatments targeted at genetic risk factors of the disease, like APOE4, which affects more than half of the Alzheimer's population."
-end-
Tel Aviv University (TAU) is inherently linked to the cultural, scientific and entrepreneurial mecca it represents. It is one of the world's most dynamic research centers and Israel's most distinguished learning environment. Its unique-in-Israel multidisciplinary environment is highly coveted by young researchers and scholars returning to Israel from post-docs and junior faculty positions in the US.

American Friends of Tel Aviv University (AFTAU) enthusiastically and industriously pursues the advancement of TAU in the US, raising money, awareness and influence through international alliances that are vital to the future of this already impressive institution.

American Friends of Tel Aviv University

Related Lipids Articles:

Early lipids boost brain growth for vulnerable micro-preemies
Dietary lipids, already an important source of energy for tiny preemies, also provide a much-needed brain boost by significantly increasing global brain volume as well as increasing volume in regions involved in motor activities and memory, according to research presented during the Pediatric Academic Societies 2019 Annual Meeting.
Researchers uncover new cause of abdominal aortic aneurysm
Researchers have discovered that a family of lipids (fats) contribute to the development of a serious aortic disease, by driving clotting in the blood vessel wall.
Two papers describe how a membrane protein can move both lipids and ions
The TMEM16 family of membrane proteins was hailed as representing the elusive calcium-activated chloride channels.
New lipid shape atlas holds key to early disease detection
A team of Vanderbilt University chemists started decoding the total human molecular picture by examining 456 variations of one class of molecule, lipids, bellwethers of disease.
An integrative approach to studying lipid biology
The proteins that manage lipids in the cell are notoriously hard to study.
Phat on potential, lipidomics is gaining weight
Next-generation study of lipids expands in scope with database established by UC San Diego researchers.
Scientists uncover crucial biological circuits that regulate lipids and their role in overall health
Tiny microscopic worms, invisible to the naked eye, are helping scientists to better understand an extraordinarily complex biological pathway that connects fat to overall health and aging in humans.
Mutation associated with als causes sugar-starved cells to overproduce lipids, study shows
A genetic defect tied to a variety of neurodegenerative diseases and mental illnesses changes how cells starved of sugar metabolize fatty compounds known as lipids, a new study led by researchers from the Johns Hopkins Bloomberg School of Public Health shows.
Studying cellular fats reveals how to protect cells from the common cold
As temperatures drop and the sniffles start, take hope; research suggests a new approach to protect ourselves from the common cold.
Improving paleotemperature reconstruction: Swiss lakes as a model system
For years, scientists have been trying to determine the climate of the past in order to make better predictions about future climate conditions.
More Lipids News and Lipids Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.