Nav: Home

Citrus greening disease pathogen has gut-wrenching effect on insect vector

October 05, 2016

ITHACA, NY--The bacterium that causes citrus greening disease is not only decimating citrus orchards, but wreaks havoc in the guts of the insect that transmits it.

Cells in the midgut of the Asian citrus psyllid self-destruct when infected with the citrus greening bacterium, report researchers in the laboratory of Michelle Cilia, a Research Molecular Biologist at the USDA Agricultural Research Service and an assistant professor at the Boyce Thompson Institute (BTI) and the School of Integrative Plant Science at Cornell University. The findings, published Sept. 15 in Scientific Reports, suggest that strategies to interfere with cell death in the midgut may prevent the psyllid from spreading the bacterium further.

"This research shows that gut is a critical interface for this pathogen to move into the insect," said Cilia. "It is highly unusual for a plant pathogen to cause such a profound response in the insect vector and the insect's response may be an Achilles' heel that we can exploit to thwart the acquisition and transmission of the bacterium by the insect."

Citrus greening disease, also called Huanglongbing, has taken a terrible toll on Florida's $9 billion citrus industry and infected trees have already been detected in California. The disease is caused by the bacterium Candidatus Liberibacter asiaticus (CLas), which is transmitted by the Asian citrus psyllid as it moves from tree to tree, feeding on sap.

The new research shows that the Asian citrus psyllid tries unsuccessfully to fight off the infection by killing infected cells lining the gut but the observation can also be explained by CLas's effort to spread beyond this important tissue barrier. The midgut is the first barrier that CLas must pass before entering the insect's body fluid, called hemolymph. CLas then travels to the salivary glands, which it must cross before being injected into a new tree through the insect's piercing, sucking mouthparts.

Researchers at BTI, the USDA and a visiting scientist from the Volcani Center raised Asian citrus psyllids on CLas-infected citrus plants and then dissected out their guts and visualized them under a microscope. When compared to non-infected psyllids, the gut cells exposed to CLas had dead spots, abnormalities and broken nuclei. These changes were accompanied by biomarkers signifying programmed cell death and DNA degradation. All of these signs point to an immune response mounted by the psyllid against the bacterium.

The Asian citrus psyllid is most effective at transmitting CLas when infected as a nymph, and insects that are infected as adults are less successful vectors for the bacterium. The authors speculate that adult psyllids may be better able to fight the CLas infection and reduce transmission rates.

The study adds to the growing body of work suggesting that bacteria and viruses can escape cell death in the insect, and in some cases, may even use it to their advantage to increase transmission.

In practical terms, the findings point to cell death in the psyllid midgut as a place where humans could intervene to block the bacterium's path through the insect. Scientists could introduce "interdiction" molecules that block proteins involved in cell death, or use genetic approaches to silence genes related to the process. Gut binding compounds have already been developed that stop aphids from taking up plant pathogens, and the researchers are working on similar compounds for psyllids.

Deploying one of these strategies would likely take a year of laboratory experiments, followed by two to five years of field testing and another year for EPA and USDA approvals. While the delay will be painful for citrus growers, a targeted and precise approach is likely to be more successful at saving the citrus industry than current attempts to treat groves with pesticides or antibiotics.
Co-authors in the study include Murad Ghanim of the Volcani Center in Israel, BTI visiting scholar Somayeh Fattah-Hosseini and former BTI postdoctoral scientist Amit Levi.

Research reported in this news release was supported by grants from the California Citrus Research Board (5300-155 and 5300-163), the United States Department of Agriculture Agricultural Research Service (8062-22410-006-00) and the Agricultural Research Organization in Israel.

Boyce Thompson Institute

Related Cell Death Articles:

Starvation causes atypical cell death
Researchers from IDIBELL -- within the Marie Curie ITN TRAIN-ERs -- have characterized the cell death process due to starvation, in which the endoplasmic reticulum plays a leading role.
An 'IRBIT'uary before cell death
Billions of cells in our bodies die every day in an important process called apoptosis.
APOL1 linked to reduced nephrocyte function, increased cell size, accelerated cell death
A Children's National Health System research team has uncovered a novel process by which the gene APOL1 contributes to renal disease, according to a paper published Nov.
Neurobiology: Epigenetics and neural cell death
Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have demonstrated how deregulation of an epigenetic mechanism that is active only in the early phases of neurogenesis triggers the subsequent death of neural cells.
Cell death: How a protein drives immune cells to suicide
For some pathogens, attack is the best form of defense -- they enter immune cells of the human body.
Brain cell death in Alzheimer's linked to structural flaw
Researchers have identified a new biological pathway involved in Alzheimer's disease.
Clarifying the role of CHOP/GADD153 in cell death
In the May 2016 Nature Communications, investigators at the Medical University of South Carolina report that CHOP/GADD153-dependent apoptosis is mediated by the micro-RNA miR-216b.
New insights in cancer therapy from cell death research
Killed cancer cells serve as a potent anti-cancer vaccine Researchers in the group of Prof.
New class of drugs specifically induces cell death in B cell blood cancers
New research from The Wistar Institute shows how one protein found on the endoplasmic reticulum can serve as a target for stimulating the immune system and a more direct target for cellular death in B cell malignancies.
Scientists reveal alternative route for cell death
Researchers at St. Jude Children's Research Hospital have uncovered a new pathway for mitochondrial cell death that involves the protein BCL-2 ovarian killer otherwise known as BOK.

Related Cell Death Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...