Nav: Home

Scientists speed up muscle repair -- could fight dystrophy

October 05, 2016

Baltimore, MD--Athletes, the elderly and those with degenerative muscle disease would all benefit from accelerated muscle repair. When skeletal muscles, those connected to the bone, are injured, muscle stem cells wake up from a dormant state and repair the damage. When muscles age, however, stem cell number and function declines, as do both tissue function and regenerative ability. Carnegie's Christoph Lepper and team*, including researchers from the University of Missouri, investigated muscle stem cell pool size. In particular, they asked if stem cell number could be increased, and if there would be any associated functional benefits.

Using genetically modified mice, the scientists found that while a muscle's size remained unchanged, it surprisingly, is capable of supporting a much greater number of these stem cells than previously thought. These "super-numeral" stem cells could repair injured muscle and were faster at it than when only normal numbers are present. The team also found that the increase in stem cells stunts the decline of weakened, degenerative muscles, potentially a boon for fighting muscular dystrophy. The study is published in the October 11, 2016, issue of eLife.

Muscle stem cells, called satellite cells, are undifferentiated muscle cells that promote growth, repair and regeneration. As Lepper explained: "These satellite cells make up some 5-7% of all muscle cells and are essential to muscle regeneration. When a mouse is born, the satellite cells divide and differentiate for about 3 to 4 weeks driving tissue growth. They then go quiet until an injury is detected. The number of satellite cells set aside at this time appears to be relatively constant with regard to the host muscle tissue size. We wanted to see whether this ratio could be manipulated and, if so, whether there would be any physiological consequences."

Lepper's collaborator Richard Tsika had previously generated mice that overexpressed a gene called TEAD1 and found that the protein the gene produces, TEAD1, affects the regulation of the type of muscle fiber produced. The current study documents the dramatic effect TEAD1-expressing muscle fibers have on their associated satellite cells, which do not express TEAD1. TEAD1 transgenic mice have up to a six-fold increase in the number of satellite cells, which was true across all muscle groups that were analyzed.

This study facilitated the surprising discovery that the muscle fiber can "communicate" to its stem cells to influence the stem cell pool size. This molecular communication to the satellite cells was the origin of the stem cell increase.

"We were very surprised to find that it was possible to uncouple the number of stem cells from the host tissue size without seeing negative consequences to muscle physiology," remarked Sheryl Southard, co-lead author on the paper with Ju-Ryoung Kim. Remarkably, the increased number allowed muscles to regenerate much faster after injury.

Importantly, the scientists found that in a mouse model for Duchenne muscular dystrophy, TEAD1 overexpression stunted the wasting disease.

The researchers suggest that the increase in the number of satellite cells, without any changes to overall muscle size, makes the genetically modified TEAD1 mouse a good model organism. With it, they hope to discover the molecular cascade that regulates muscle stem cell number and the "stop" and "go" signals that cause the cells to differentiate and go quiet.
-end-
*The authors on the paper are Sheryl Southard, Ju-Ryoung Kim, SiewHui Low (also a Carnegie researcher), Richard Tsika, and Christoph Lepper. This work was supported by NIH grant DP5OD009208, AR41464, and the Carnegie Institution for Science

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".