Nav: Home

Sensors -- quantum leap

October 05, 2016

By exploiting some exotic quantum states, researchers have conceptually designed a sensor that features unparalleled sensitivity. In a paper published in Physical Review A, Ali Passian of Oak Ridge National Laboratory and George Siopsis of the University of Tennessee describe a photon-sensing scheme for a detector that would behave much like a miniature trampoline. The concept is based on a suspended micro-bridge, but other shapes can be considered. "Photons hitting its surface would cause a tiny displacement that can be detected because of the quantum mechanical effect of squeezing, allowing us to minimize the movement of the sensor prior to arrival of the photons," Passian said. This approach reduces the inherent limitation caused by all objects having a motion even in their lowest energy state. The next step will be validation through laboratory experiments.
-end-


DOE/Oak Ridge National Laboratory

Related Photons Articles:

Quantum physics: Ménage à trois photon-style
When two photons become entangled, the quantum state of the first will correlate perfectly with the quantum state of the second.
Converting absorbed photons into twice as many excitons: Successful high-efficiency energy conversion with organic monolayer on gold nanocluster surface
A group of researchers from Kobe and Keio universities found that when light was exposed to the surface of a tetracene alkanethiol-modified gold nanocluster, which they developed themselves, twice as many excitons could be converted compared to the number of photons absorbed by the tetracene molecules.
Illinois researchers create first three-photon color-entangled W state
Researchers at the University of Illinois at Urbana-Champaign have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other.
Robert Alfano team identifies new 'Majorana Photons'
Hailed as a pioneer by Photonics Media for his previous discoveries of supercontinuum and Cr tunable lasers, City College of New York Distinguished Professor of Science and Engineering Robert R.
Dresden physicists use nanostructures to free photons for highly efficient white OLEDs
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market -- from OLED mobile phone displays to roll-out television screens, the list of applications is long.
Generating high-quality single photons for quantum computing
MIT researchers have designed a way to generate, at room temperature, more single photons for carrying quantum information.
Photons trained for optical fibre obstacle course will deliver stronger cyber security
Researchers from the NUS-Singtel Cyber Security Research & Development Laboratory demonstrate a way to improve quantum key distribution over fiber networks.
Researchers pinpoint origin of photons in mysterious gamma-ray bursts
Scientists from the RIKEN Cluster for Pioneering Research and collaborators have used simulations to show that the photons emitted by long gamma-ray bursts -- one of the most energetic events to take place in the universe -- originate in the photosphere -- the visible portion of the 'relativistic jet' that is emitted by exploding stars.
Entangling photons of different colors
Researchers at the National Institute of Standards and Technology (NIST) have developed a novel way to entangle two photons--one with a wavelength suitable for quantum-computing devices and the other for fiber-optics transmissions.
Quantum dots can spit out clone-like photons
MIT and ETH Zurich researchers have produced coherent single photon emitters, a key component for future quantum computers and communications systems.
More Photons News and Photons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.