Nav: Home

Study shows potential disease treatment in newborns via drug delivery to amniotic fluid

October 05, 2016

A breakthrough study by research teams at Rosalind Franklin University of Medicine and Science and Oregon Health & Science University offers promise for therapeutic management of congenital diseases in utero using designer nucleotide sequences that can simply be injected into the fluid surrounding the developing fetus to potentially treat disabling-to-lethal genetic defects.

Recently published in the journal Nucleic Acids Research, the study shows that antisense oligonucleotides (ASOs), short strands of engineered nucleic acid that are designed to bind to a specific gene-derived sequence, can be safely injected into the amniotic cavity -- the fluid-filled sac that holds the embryo. The procedure, performed in mice, resulted in targeted alteration in gene expression for up to a month after birth in some tissue.

"A major barrier to the development of treatments for congenital disorders is the risk to the developing fetus that interventions may pose," said Michelle Hastings, PhD, associate professor of cell biology and anatomy, who led the RFU team. "Our demonstration that this promising type of therapeutic can be delivered to the amniotic cavity is an important advance for fetal treatment of disease."

The study is the first demonstration of ASO embryonic transfer with amniotic fluid administration, or non-surgical insertion of ASOs into the developing fetus -- a key step toward broad application of this powerful gene therapy approach in humans.

"This could be really useful in the future to treat all types of genetic diseases," said study co-author Lingyan Wang, Ph.D., a researcher with the Oregon Hearing Research Center at OHSU.

Congenital disease, estimated to cause the death of ~300,000 infants within the first month of life each year across the globe also causes childhood illness and long-term disability. Prenatal screening techniques now make early diagnosis possible, presenting the opportunity to intervene in disease processes before birth.

"The best way to treat a disease that we know will emerge at birth is to deliver a therapy in utero to the developing fetus before irreparable damage occurs," said co-author John Brigande, Ph.D., a principal investigator in the Oregon Hearing Research Center.

The combination of a potentially low-risk delivery approach with the promising antisense drug platform, which, in theory, can alter any disease-associated aberrant gene expression by simply designing the sequence of the injectable molecule to match the target gene, is an exciting breakthrough, though more work needs to be done to improve the efficiency of drug uptake and distribution to specific tissues.

"We predict that fetal ASO pharmacotherapy has the potential to safely enable therapeutic strategies for the treatment of fetal and congenital genetic disease," the authors wrote.
-end-
This study was conducted by a team of researchers from around the country, including lead author Frederic Depreux, Ph.D., with Francine Jodelka and Michelle Hastings, Ph.D, at RFU; John Brigande, Ph.D., Lingyan Wang, Ph.D., and Han Jiang, Ph.D., at OHSU; Frank Rigo, Ph.D., of Ionis Pharmaceuticals; and Robert F. Rosencrans, Ph.D., and Jennifer J. Lentz, Ph.D., with the Neuroscience Center and Department of Otorhinolaryngology, LSU Health Sciences Center in New Orleans.

The research was funded by the National Institutes of Health [R01-DC012596 to M.L.H., R21-DC012916 to J.V.B., R01-DC014160 to J.V.B., P30-DC005983 to J.V.B., 1 U54 GM104940 to J.J.L., P30-GM103340 to J.J.L.]; and Foundation Fighting Blindness (to J.J.L., M.L.H.)

Rosalind Franklin University of Medicine and Science

Related Cell Biology Articles:

Cell biology: Endocannabinoid system may be involved in human testis physiology
The endocannabinoid system (ECS) may be directly involved in the regulation of the physiology of the human testis, including the development of sperm cells, according to a study in tissue samples from 15 patients published in Scientific Reports.
Cell biology -- Potential drop signals imminent danger
Misfolded proteins must be promptly eliminated as they can form toxic aggregates in cells.
Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Massive database traces mammal organ development, cell by single cell
A new study by researchers at the Allen Discovery Center at UW Medicine has traced animportant period of organ formation, cell by cell, in the developing mouse.
New retinal ganglion cell subtypes emerge from single-cell RNA sequencing
Single-cell sequencing technologies are filling in fine details in the catalog of life.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
Researchers develop process producing cell-sized lipid vesicles for cell-cell synaptic therapies
Novel and robust process to produce functionalized giant unilamellar vesicles (GUVs) on-demand from double emulsions templates results in artificial cells with surface ligand neuroligin-2 (NL-2) to promote insulin secretion in pancreatic β cells, demonstrating a versatile cell-cell synaptic therapeutic paradigm.
Cell biology: Positioning the cleavage furrow
Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have identified a signaling pathway that restricts cleavage furrow formation to the mid-plane of the cell.
Engineers hack cell biology to create 3-D shapes from living tissue
Many of the complex folded shapes that form mammalian tissues can be explained with very simple instructions, UC San Francisco bioengineers report Dec.
More Cell Biology News and Cell Biology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.