Nav: Home

Smartphone microscope creates interactive tool for microbiology

October 05, 2016

A new 3-D printed, easily assembled smartphone microscope developed at Stanford University turns microbiology into game time. The device allows kids to play games or make more serious observations with miniature light-seeking microbes called Euglena.

"Many subject areas like engineering or programming have neat toys that get kids into it, but microbiology does not have that to the same degree," said Ingmar Riedel-Kruse, an assistant professor of bioengineering. "The initial idea for this project was to play games with living cells on your phone. And then it developed much beyond that to enable self-driven inquiry, measurement and building your own instrument."

Riedel-Kruse named his device the LudusScope after the Latin word "Ludus," which means "play," "game" or "elementary school." He and first author Honesty Kim, a graduate student in Riedel-Kruse's lab, are set to publish details of the LudusScope in PLOS ONE on Oct. 5.

Playing with cells

The LudusScope consists of a platform for the microscope slide where the Euglena swim freely, surrounded by four LEDs. Kids can influence the swimming direction of these light-responsive microbes with a joystick that activates the LEDs.

Above the platform, a smartphone holder positions the phone's camera over a microscope eyepiece, providing a view of the cells below.

On the phone, children can run a variety of software that overlay on top of the image of the cells. One looks like the 1980s video game Pac-Man, with a maze containing small white dots. Kids can select one cell to track, then use the LED lights to control which direction the cell swims in an attempt to guide it around the maze and collect the dots. Another game looks like a soccer stadium. Kids earn points by guiding the Euglena through the goal posts.

Other non-game applications provide microscope scale-bars, real-time displays of swimming speed or zoomed-in views of individual cells. These let kids collect data on Euglena behavior, swimming speed and natural biological variability. Riedel-Kruse encourages teachers to have students model the behaviors they see using a simple programming application called Scratch, which many kids already learn in school.

Each of the elements, from the plastic microscope to the chamber that holds the Euglena, is something youngsters can build themselves from simple, easily available parts.

Complex beginnings

The project began as part of a Stanford bioengineering class Riedel-Kruse taught, with much more complex parts. But he wondered if the elements could be simplified for younger learners.

"We wondered if we could make it so easy to replicate that even middle-schoolers could build it," he said.

In its current iteration, a teacher who wanted to use the device in class could start with the open-source 3D printing patterns and software included as part of the paper. An increasing number of schools have 3D printers, but those that don't can send the plans to a professional printer. That produces pieces to construct the stage that holds a microscopic slide and a holder for the microscope eyepiece and smartphone.

For the joystick controller, students would need to wire a small circuit out of common electronics parts to receive signals from the joystick and transmit them to the LEDs.

Euglena are already commonly used in classrooms and they can be purchased through biological supply companies. For the game, Euglena swim within a chamber made by adhering strips of double-sided tape to the slide and to the cover slip.

The act of building, observing, interacting and modeling the cells fits easily within the new science learning guidelines emphasized by the Next Generation Science Standards being adopted by many schools, Riedel-Kruse said.

Expert opinion

The real experts on what makes for a fun game are the kids who Riedel-Kruse hopes might one day use the LudusScope. To test it out, his team took the scope to a walk-by science event and also invited students and teachers to the lab.

Science teachers and high-school students who had a chance to interact with the LudusScope saw potential for education, although Riedel-Kruse said they valued the game aspect less than other properties of the LudusScope.

"I thought the interactive cell stimulation and the resulting games was the coolest thing but the teachers and students didn't necessarily agree," Riedel-Kruse said. "What they were more excited about is the more basic things like the ability to build your own instrument, that multiple people can see the screen at the same time and that you can select and track individual cells."

Riedel-Kruse is continuing to update the LudusScope with input from teachers and students. He has received a seed grant to collaborate with an educational game company to carry out more user studies and to develop a science kit. He expects that kit could be available for purchase in over a year.
-end-
Additional authors include Lukas C. Gerber, Daniel Chiu, Seung Ah Lee, Nate Cira and Sherwin Yuyang Xia. Riedel-Kruse is also a member of Stanford Bio-X.

This work was supported by the National Science Foundation and a Stanford Graduate Fellowship.

Stanford University

Related Microbiology Articles:

79 Fellows elected to the American Academy of Microbiology
In January of 2015, the American Academy of Microbiology elected 79 new Fellows.
New discovery in the microbiology of serious human disease
Previously undiscovered secrets of how human cells interact with a bacterium which causes a serious human disease have been revealed in new research by microbiologists at The University of Nottingham.
4 cells turn seabed microbiology upside down
With DNA from just four cells, researchers reveal how some of the world's most abundant organisms play a key role in carbon cycling in the seabed.
87 scientists elected to the American Academy of Microbiology
Eighty-seven microbiologists have been elected to Fellowship in the American Academy of Microbiology.
Tips from the journals of the American Society for Microbiology
This release includes information about these articles: Specific Bacterial Species May Initiate, Maintain Crohn's; Bacteria Involved in Sewer Pipe Corrosion Identified; Antibodies to Immune Cells Protect Eyes In Pseudomonas Infection; Dangerous Form of MRSA, Endemic In Many US Hospitals, Increasing in UK.
Tips from the journals of the American Society for Microbiology
Upcoming articles from the journals of the American Society for Microbiology include:
Microbiology brought to life in Nottingham
Antimicrobial insect brains, mouth bacteria behaving badly and the hundreds of microbial communities that lurk in household dust are just some of the highlights at the Society for General Microbiology's autumn meeting in Nottingham next week.
Tips from the journals of the American Society for Microbiology
The following are tips from the journals of the American Society for Microbiology:
Tips from the journals of the American Society for Microbiology
The following are tips from the Journals of the American Society for Microbiology:
New text focuses on microbiology of historic artifacts
Historic and culturally important artifacts, like all materials, are vulnerable to microbial attack.

Related Microbiology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...