Nav: Home

Breakthrough for bone regeneration via double-cell-layered tissue engineering technique

October 05, 2016

Tokyo, Japan - Various technologies have been developed to introduce laboratory-grown bone-forming cells into bone defects to promote their repair. However, these have many limitations as the conditions of the cells and their surroundings do not accurately mimic those typically found in the body. This means they cannot optimally promote bone formation. A research team at Tokyo Medical and Dental University (TMDU) has now made a major advance in overcoming these difficulties by developing a technique for producing double-layered cell constructs that can be transplanted onto bone defects. The technique increases the speed of bone repair and the flexibility and durability of the constructs make them ideal for many surgical applications.

Cells with various functions can now be cultured in the laboratory and then introduced into the body to treat different medical conditions. However, as individual cells can spread away from the site of injury, they need to be held in place on a scaffold, which is then transplanted into the body. Substantial progress has already been made in this sort of tissue engineering. When the body repairs broken or damaged bones, it employs a complex system of molecular signals and cells, including osteoblasts that build up the calcium matrix on which bone is based. To speed up the repair of bone defects by artificial means or enable recovery from severe injuries, tissue engineering approaches thus need to mimic this complex system.

"After establishing our double-layered cell transfer technology, we used it to apply different combinations of cells related to bone formation to defects in mouse skulls," first author Keiko Akazawa says. "We found that osteoblasts together with stem cells from tooth-supporting ligament were particularly effective at promoting bone repair than equivalent scaffolds containing only a single cell layer."

The double-layered cell constructs were also tested for their stability and flexibility. The cells remained attached despite folding the constructs or trimming them to fit the shape of a particular defect. Coauthor Kengo Iwasaki says: "The durability of these new constructs makes them particularly suitable for surgical applications. We have high expectations for their use in regenerative medicine for treating a range of defects using different cell layer combinations."

The article "Double-layered cell transfer technology for bone regeneration" was published in Scientific Reports at DOI: 10.1038/srep33286.
-end-


Tokyo Medical and Dental University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...