Nav: Home

Solving the problem of glare

October 05, 2016

WASHINGTON -- If you have ever turned on your car's high beams while driving through fog, you've seen glare in action. As the extra light reflects off the fog, it becomes even more difficult to see what lies ahead. In compelling new research, two scientific teams have developed innovative methods for counteracting glare and reducing unwanted light much like noise-canceling headphones eliminate unwanted sound.

In The Optical Society's journal for high impact research, Optica, the research teams present methods that use modified light to reduce glare, which can not only obscure objects behind fog, but also make it difficult to take images through skin and other materials that scatter light.

Although the new glare reduction approaches are not yet practical for seeing through fog, they could offer a big improvement in imaging for applications in biomedicine, astronomy and other fields. Glare has been a persistent challenge for biomedical researchers seeking to see through skin or other membranes, for example, and it can cause trouble for astronomers looking at planets obscured by the light of bright stars.

A noise-canceling camera

Changhuei Yang's team from the California Institute of Technology, California, USA, demonstrated a method that can reduce glare by a factor of ten. The approach cancels out glare with illumination that matches the coherence of the glare but not the reflection of the object under view. Light is coherent when the peaks and troughs of its waves are the same size.

"We are trying to invent a type of noise-canceling camera by separating the glare from the target's reflection so that the target can easily be seen," said Edward Haojiang Zhou, a graduate student at the California Institute of Technology and first author of the paper.

The researchers showed that their approach can produce images of an object placed 2 millimeters behind a 1-millimeter-thick, light-scattering sample, making it a promising approach for microscopy. "By changing the coherence of the light, the method we demonstrated can be used to simultaneously image objects at various distances from the light source," said Zhou. "This provides a great deal of freedom for imaging through scattering samples with thicknesses from one millimeter to a kilometer."

Zhou pointed out that other approaches used to compensate for glare require expensive and complicated equipment, while their setup uses basic and readily available optical components. The researchers are now working to apply their technique to improve the quality of images taken by satellites and plan to try it with astronomy applications, where it could help researchers peer through the opaque atmospheres of other planets, such as Venus.

Blinded by the light

Yaron Silberberg's research team at the Weizmann Institute of Science, Israel, demonstrated an approach that is similar to Zhou's, but instead of changing the light's coherence, his team reduces glare by using wavefront shaping to change the field of the light illuminating the object. This method minimizes the amount of blinding light scattered into the camera by using an optical device called a spatial light modulator (SLM) and an optimization algorithm to control the shape of the impinging light field.

Wavefront shaping has been used for some time to improve imaging in microscopy and astronomy applications. "Almost all other work with wavefront shaping involves trying to maximize the amount of light that will be received by the camera," said Silberberg. "In this work, we are trying to do the opposite by minimizing the amount of light that is reflected."

As in Yang's work, reducing glare with wavefront shaping requires that the light from the object and the background be mutually incoherent, and the glare must be fairly static for the optimization process to be effective. The method can, however, be used to detect quickly moving objects such as blood cells by reducing the light coming from the static background. This could be useful for microfluidic applications and flow cytometry, a technique used in many diagnostic and biomedical research applications.

"Our lab uses wavefront shaping for many different purposes," said Silberberg. "We are trying to develop a toolbox where, using wavefront shaping and SLMs, you can improve imaging, especially under difficult conditions. Glare reduction will be part of this toolbox."

A. Daniel, L. Lieberman, Y. Silberberg, "Wavefront shaping for glare reduction," Optica, 3, 10, 1107 (2016). DOI: 10.1364/OPTICA.3.001107.

E.H. Zhou, A. Shibukawa, J. Brake, H. Ruan, C. Yang, "Glare suppression by coherence gated negation," Optica, 3, 10, 1104 (2016). DOI: 10.1364/OPTICA.3.001104.

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 40 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit

The Optical Society

Related Astronomy Articles:

An application of astronomy to save endangered species
The world's first project that combines drone technology with astrophysics to monitor the distribution and density of animal populations to help the conservation of endangered species.
The past, present & future of gravitational-wave astronomy, with Kip Thorne & Rainer Weiss
In an interview published online this week, the winners of the 2016 Kavli Prize in Astrophysics discuss their 40-year effort to detect gravitational waves, the elusive ripples in the fabric of space-time that Albert Einstein so boldly predicted.
Astronomy shown to be set in standing stone
University of Adelaide research has for the first time statistically proven that the earliest standing stone monuments of Britain, the great circles, were constructed specifically in line with the movements of the Sun and Moon, 5000 years ago.
RIT awarded a total of $1 million from NSF for gravitational-wave astronomy
RIT won more than $1 million in federal funding to study the dynamics of extreme black holes and to develop the Einstein Toolkit, making Einstein's equations user-friendly for scientists exploring the new field of gravitational wave astronomy.
Largest crowdsource astronomy network helps confirm discovery of 'Tatooine' planet
Lehigh University astronomer assistant professor of physics Joshua Pepper is using crowdsourcing to gather observations worldwide.
ESO signs largest ever ground-based astronomy contract for E-ELT dome and structure
At a ceremony in Garching bei München, Germany, ESO signed the contract with the ACe Consortium, consisting of Astaldi, Cimolai and the nominated sub-contractor EIE Group, for the construction of the dome and telescope structure of the European Extremely Large Telescope (E-ELT).
John Beckman: 'Astronomy is a science that makes us humble'
The University of La Laguna celebrated the solemn act of investment as Doctor Honoris Causa of the astrophysicist John Beckman, Emeritus Research Professor of the Consejo Superior de Investigaciones Científicas and of the Astrophysics Department of the University of La Laguna, as well as researcher at the Instituto de Astrofísica de Canarias.
Launch of Astrosat first Indian astronomy satellite
The first Indian astronomy satellite Astrosat, was launched on Sept.
IAU signs agreements for 5 new coordinating offices of astronomy for development
The International Astronomical Union's (IAU) Office of Astronomy for Development has established new coordinating offices in Armenia, Colombia, Jordan, Nigeria and Portugal.
New era of astronomy as gravitational wave hunt begins
Australian scientists are in the hunt for the last missing piece of Einstein's General Theory of Relativity, gravitational waves, as the Advanced LIGO Project in the United States comes online.

Related Astronomy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...