Nav: Home

Brain study reveals how teens learn differently than adults

October 05, 2016

NEW YORK, October 5, 2016 -- Scientists have uncovered a unique feature of the adolescent brain that enriches teens' ability to learn and form memories: the coordinated activity of two distinct brain regions. This observation, which stands in contrast to the adult brain, may be related to teens' oft-derided affinity for reward-seeking behavior. These findings suggest that such behavior is not necessarily detrimental, but instead may be a critical feature of adolescence and the maturing brain.

The results of this research were published today in Neuron.

"Studies of the adolescent brain often focus on the negative effects of teens' reward-seeking behavior. However, we hypothesized that this tendency may be tied to better learning," said Daphna Shohamy, PhD, a principal investigator at Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute and associate professor of psychology at Columbia. "Using a combination of learning tasks and brain imaging in teens and adults, we identified patterns of brain activity in adolescents that support learning -- serving to guide them successfully into adulthood."

For this study, which involved 41 teens and 31 adults, the authors initially focused on a brain region called the striatum. Previous research has shown that the striatum coordinates many aspects of higher brain function, from planning to decision making. But it is most well-known for its role in something called reinforcement learning.

"In simplest terms, reinforcement learning is making a guess, being told whether you're right or wrong, and using that information to make a better guess next time," said Juliet Davidow, PhD, the paper's first author, who completed this research while earning her doctorate in psychology at Columbia and is now a postdoctoral fellow at Harvard University.

For example, imagine you are given a series of cards with numbers on them and are asked to guess the next number in the sequence.

"If you guess right, the striatum shows activity that corresponds to that positive feedback, thus reinforcing your choice," Dr. Davidow explained. "Essentially, it is a reward signal that helps the brain learn how to repeat the successful choice again."

Because of teens' inclination toward reward-seeking behavior, the researchers proposed that this age group would outpace adults in terms of reinforcement learning by showing a greater affinity for rewards. This hypothesis was confirmed after asking both groups to perform a series of learning tasks.

To see what was happening in the brain, Dr. Shohamy teamed up with Adriana Galván, PhD. Dr. Galván, who is an associate professor of psychology and faculty member of the Brain Research Institute at the University of California, Los Angeles, is an expert in brain imaging in teenagers. Together, they scanned the brains of each participant with functional magnetic resonance imaging (fMRI) while they were performing the learning tasks. The authors hypothesized that the teens' superior abilities were due to a hyperactive striatum.

"But surprisingly, when we compared the brains of teens to those of adults, we found no difference in reward-related striatal activity between the two groups," said Dr. Davidow. "We discovered that the difference between adults and teens lay not in the striatum but in a nearby region: the hippocampus."

The hippocampus is the brain's memory headquarters. And while important for storing memories of events, places or individuals, it is not typically related to reinforcement learning. But in this study, the authors' fMRI analysis revealed an uptick in hippocampal activity for teens -- but not adults -- during reinforcement learning. Moreover, that activity seemed to be tightly coordinated with activity in the striatum.

To investigate this connection, the researchers slipped in random and irrelevant pictures of objects into the learning tasks, such as a globe or a pencil. The images -- which had no bearing on whether the participants guessed right or wrong -- served as a kind of background noise during the tasks. When asked later on, both adults and teens remembered seeing some of the objects, but not others. However, only in the teens was the memory of the objects associated with reinforcement learning, an observation that was related to connectivity between the hippocampus and striatum in the teen brain.

"What we can take from these results isn't that teens necessarily have better memory, in general, but rather the way in which they remember is different," said Dr. Shohamy, who is also a member of Columbia's Kavli Institute for Brain Science. "By connecting two things that aren't intrinsically connected, the adolescent brain may be trying to build a richer understanding of its surroundings during an important stage in life."

Indeed, studies have shown that adolescence is a pivotal time when powerful memories are formed, which the authors argue could be due to this enhanced connectivity between the hippocampus and striatum.

"Broadly speaking, adolescence is a time when teens begin to develop their independence," said Dr. Shohamy. "What more could a brain need to do during this period than jump into learning overdrive? It may be that the uniqueness of the teen brain may drive not only how they learn, but how they use information to prime themselves for adulthood."
-end-
This paper is titled: "An upside to reward sensitivity: The hippocampus supports enhanced reinforcement learning in adolescence." Additional coauthors include Karin Foerde, PhD, assistant professor of psychology at New York University.

This research was supported by the National Science Foundation (DGE-11-44155, BCS 0963750 and Career Award 0955494).

The authors report no financial or other conflicts of interest.

About the Zuckerman Institute

Grasping the implications for the health of the brain, mind, and nervous system is perhaps the greatest challenge facing 21st-century science. To lead the way, Columbia University has established a comprehensive institute for the pursuit of interdisciplinary and collaborative research in brain science. Building on the University's distinguished history in the study and treatment of the brain, the Mortimer B. Zuckerman Mind Brain Behavior Institute will bring together 1,000 scientists in a single state-of-the-art engine of discovery--based at the Jerome L. Greene Science Center--now rising on the University's new Manhattanville campus. It will form the hub of an even larger collaborative network of academics stretching across all disciplines--including the arts, economics, law, and medicine--and campuses, from Columbia University Medical Center to Morningside Heights and beyond. To learn more, visit zuckermaninstitute.columbia.edu.

The Zuckerman Institute at Columbia University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".