Nav: Home

Parkinson's disease protection may begin in the gut

October 05, 2016

Your gut may play a pivotal role in preventing the onset of Parkinson's disease. And the reason may be its knack for sleuthing.

Researchers at the University of Iowa have found that the gut may be key to preventing Parkinson's disease. Cells located in the intestine spark an immune response that protects nerve cells, or neurons, against damage connected with Parkinson's disease. Acting like detectives, the immune intestinal cells identify damaged machinery within neurons and discard the defective parts. That action ultimately preserves neurons whose impairment or death is known to cause Parkinson's.

"We think somehow the gut is protecting neurons," says Veena Prahlad, assistant professor in biology at the UI and corresponding author on the paper published Aug. 30 in the journal Cell Reports.

Parkinson's disease is a brain disorder that erodes motor control and balance over time. It affects some 500,000 people in the U.S., according to the National Institutes of Health. The disease occurs when neurons--nerve cells--in the brain that control movement become impaired or die. Normally, these neurons produce dopamine, and when they are damaged or killed, the resulting dopamine shortage causes the motor-control problems associated with the disease.

Scientists have previously linked Parkinson's to defects in mitochondria, the energy-producing machinery found in every human cell. Why and how mitochondrial defects affect neurons remain a mystery. Some think the impaired mitochondria starve neurons of energy; others believe they produce a neuron-harming molecule. Whatever the answer, damaged mitochondria have been linked to other nervous disorders as well, including ALS and Alzheimer's, and researchers want to understand why.

Prahlad's team exposed roundworms to a poison called rotenone, which researchers know kills neurons whose death is linked to Parkinson's. As expected, the rotenone began damaging the mitochondria in the worms' neurons. To the researchers' surprise, though, the damaged mitochondria did not kill all of the worms' dopamine-producing neurons; in fact, over a series of trials, an average of only seven percent of the worms, roughly 210 out of 3,000, lost dopamine-producing neurons when given the poison.

"That seemed intriguing, and we wondered whether there was some innate mechanism to protect the animal from the rotenone," Prahlad says.

It turns out there was. The roundworms' immune defenses, activated when the rotenone was introduced, discarded many of the defected mitochondria, halting a sequence that would've led to the loss of dopamine-producing neurons. Importantly, the immune response originated in the intestine, not the nervous system.

"If we can understand how this is done in the roundworm, we can understand how this may happen in mammals," Prahlad says.

The researchers plan to conduct more experiments, but they've got some interesting hypotheses. One is the intestinal immune cells are, according to Prahlad, "constantly surveilling mitochondria for defects."

Even more, those cellular watchdogs may be keeping their eyes on the mitochondria "because they don't trust them," Prahlad suggests. The reason has to do with the prevailing theory that mitochondria originated independently as a type of bacterium and were only later incorporated into the cells of animal, plants, and fungi as an energy producer.

If that theory is correct, the intestinal immune responders may be especially sensitive to changes in mitochondrial function not only for its potential damaging effects, but because of the mitochondria's ancient and foreign past as well.

"How it's happening is suggestive of the possibility that the innate immune response is constantly checking its mitochondria," Prahlad says, "perhaps because of the bacterial origin of the mitochondria."
-end-
The paper is titled, "The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective." The first author is Madhusudana Rao Chikka, who was a postdoctoral researcher at the UI during the study and who helped design and execute the experiments. Contributing authors, all from UI's biology department, include Charumathi Anbalagan, Katherine Dvorak, and Kyle Dombeck.

The nonprofit Ellison Medical Foundation funded the study.

University of Iowa

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...