Nav: Home

Parkinson's disease protection may begin in the gut

October 05, 2016

Your gut may play a pivotal role in preventing the onset of Parkinson's disease. And the reason may be its knack for sleuthing.

Researchers at the University of Iowa have found that the gut may be key to preventing Parkinson's disease. Cells located in the intestine spark an immune response that protects nerve cells, or neurons, against damage connected with Parkinson's disease. Acting like detectives, the immune intestinal cells identify damaged machinery within neurons and discard the defective parts. That action ultimately preserves neurons whose impairment or death is known to cause Parkinson's.

"We think somehow the gut is protecting neurons," says Veena Prahlad, assistant professor in biology at the UI and corresponding author on the paper published Aug. 30 in the journal Cell Reports.

Parkinson's disease is a brain disorder that erodes motor control and balance over time. It affects some 500,000 people in the U.S., according to the National Institutes of Health. The disease occurs when neurons--nerve cells--in the brain that control movement become impaired or die. Normally, these neurons produce dopamine, and when they are damaged or killed, the resulting dopamine shortage causes the motor-control problems associated with the disease.

Scientists have previously linked Parkinson's to defects in mitochondria, the energy-producing machinery found in every human cell. Why and how mitochondrial defects affect neurons remain a mystery. Some think the impaired mitochondria starve neurons of energy; others believe they produce a neuron-harming molecule. Whatever the answer, damaged mitochondria have been linked to other nervous disorders as well, including ALS and Alzheimer's, and researchers want to understand why.

Prahlad's team exposed roundworms to a poison called rotenone, which researchers know kills neurons whose death is linked to Parkinson's. As expected, the rotenone began damaging the mitochondria in the worms' neurons. To the researchers' surprise, though, the damaged mitochondria did not kill all of the worms' dopamine-producing neurons; in fact, over a series of trials, an average of only seven percent of the worms, roughly 210 out of 3,000, lost dopamine-producing neurons when given the poison.

"That seemed intriguing, and we wondered whether there was some innate mechanism to protect the animal from the rotenone," Prahlad says.

It turns out there was. The roundworms' immune defenses, activated when the rotenone was introduced, discarded many of the defected mitochondria, halting a sequence that would've led to the loss of dopamine-producing neurons. Importantly, the immune response originated in the intestine, not the nervous system.

"If we can understand how this is done in the roundworm, we can understand how this may happen in mammals," Prahlad says.

The researchers plan to conduct more experiments, but they've got some interesting hypotheses. One is the intestinal immune cells are, according to Prahlad, "constantly surveilling mitochondria for defects."

Even more, those cellular watchdogs may be keeping their eyes on the mitochondria "because they don't trust them," Prahlad suggests. The reason has to do with the prevailing theory that mitochondria originated independently as a type of bacterium and were only later incorporated into the cells of animal, plants, and fungi as an energy producer.

If that theory is correct, the intestinal immune responders may be especially sensitive to changes in mitochondrial function not only for its potential damaging effects, but because of the mitochondria's ancient and foreign past as well.

"How it's happening is suggestive of the possibility that the innate immune response is constantly checking its mitochondria," Prahlad says, "perhaps because of the bacterial origin of the mitochondria."
-end-
The paper is titled, "The Mitochondria-Regulated Immune Pathway Activated in the C. elegans Intestine Is Neuroprotective." The first author is Madhusudana Rao Chikka, who was a postdoctoral researcher at the UI during the study and who helped design and execute the experiments. Contributing authors, all from UI's biology department, include Charumathi Anbalagan, Katherine Dvorak, and Kyle Dombeck.

The nonprofit Ellison Medical Foundation funded the study.

University of Iowa

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.