Nav: Home

Watching stem cells change provides clues to fighting osteoporosis in older women

October 05, 2016

For years, scientists have studied how stem cells might be used to treat many diseases, including osteoporosis. One consistent challenge has been observing and monitoring the process through which stem cells transform. Now, using an established scientific method, University of Missouri researchers are able to watch how human fat cells transform into bone tissue cells; in the process the research team has uncovered information about osteoporosis in older women.

"Stem cell treatments and therapies hold tremendous promise in treating a range of diseases and injuries; however, there is still a lot to learn about how stem cells grow and convert to needed tissues," said Elizabeth Loboa, dean of the MU College of Engineering. "Sometimes the biggest hurdle is watching the process as it takes place. We need the ability to observe and monitor the process without impeding it; therefore, our team decided to analyze and study a new approach to monitoring stem cells as they transform into tissues we may need to treat disease."

To watch the cells transform, the team used electrical cell-substrate impedance spectroscopy (ECIS). ECIS currently is used to monitor how cells react to drugs and to assess how cell walls or cell barriers function. The team's target was stem cells derived from human fat, or human adipose (hASC) cells and the process these stem cells use to convert to bone cells when stimulated to do so.

Using human fat-derived stem cells from young (aged 24-36 years), middle-aged (aged 48-55 years) and elderly (aged 60-81) participants, the team used ECIS to collect complex measurements during the growth and differentiation stages the hASC exhibited as they converted to bone cells. They found that elderly cells made the transition in less time, but younger cells converted more cells that secreted more calcium long-term.

"This is the first study to use ECIS to predict and monitor the potential of adipose cells transforming into bone cells," Loboa said. "Results demonstrate that ECIS can potentially be used to screen for osteogenic potential of hASC, track the stages of osteogenic differentiation for quality control purposes and better explain the underlying biological causes of variability among donors--and since the results typically are in 'real-time,' this technology could be incorporated into future manufacturing to track hASC throughout the process."
-end-
The study, "Electrical Cell-Substrate Impedance Spectroscopy Can Monitor Age-Grouped Human Adipose Stem Cell Variability During Osteogenic Differentiation," was published in Stem Cells Translational Medicine. Funding was provided by a North Carolina Space Grant Fellowship, UNC Summer Research Fellowship, the National Science Foundation (#0846610, #1133427), the National Institutes of Health (#R03EB008790) and the William R. Kenan Institute for Engineering, Technology and Science. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

University of Missouri-Columbia

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab