Nav: Home

Non-toxic solvent removes barrier to commercialization of perovskite solar cells

October 05, 2016

Scientists at Oxford University have developed a solvent system with reduced toxicity that can be used in the manufacture of perovskite solar cells, clearing one of the barriers to the commercialisation of a technology that promises to revolutionise the solar industry.

Perovskites - a family of materials with the crystal structure of calcium titanate - have been described as a 'wonder material' and shown to be almost as efficient as silicon in harnessing solar energy, as well as being significantly cheaper to produce.

By combining methylamine and acetonitrile, researchers have developed a clean solvent with a low boiling point and low viscosity that quickly crystallises perovskite films at room temperature and could be used to help coat large solar panels with the material.

The results are published in the Royal Society of Chemistry journal Energy & Environmental Science.

Dr Nakita Noel of Oxford's Department of Physics, lead author of the study, said: 'At the moment, there are three main solvents used in the manufacture of perovskite solar cells, and they are all toxic, which means you wouldn't want to come into contact with them.

'Additionally, the most efficient perovskite solar cells are currently made through a process called solvent quenching - a technique that is not easily transferred from lab-scale deposition techniques to large-scale deposition techniques. While vapour deposition of these materials can overcome this problem, it will come at additional costs. One of the main selling points of this material is that it is cheap and can be easily solution-processed.

'We have now developed the first clean, low-boiling-point, low-viscosity solvent for this purpose.'

Dr Noel added: 'What is really exciting about this breakthrough is that largely reducing the toxicity of the solvent hasn't led to a reduction in the efficiency of the material in harnessing solar energy.'

In recent years, perovskite-based solar cells have raced to the front of emerging photovoltaics, already competing on efficiency against well-established solar technologies such as the inorganic thin-film and multi-crystalline silicon used in solar panels around the world. Perovskites also have the shortest 'energy payback time' - the time taken for a material to save the same amount of energy that was expended in its production. It has been said that the sun supplies enough power in 90 minutes to meet the world's total energy needs for a year.

Study co-author Dr Bernard Wenger, also of Oxford's Department of Physics, said: 'While we are probably still a few years from seeing perovskite-based solar panels on people's roofs, this is a big step along the way.'

Professor Henry Snaith, senior author on the paper and leader of the photovoltaics group at Oxford, has been a pioneer in the development of perovskite solar cells and was one of the first researchers to recognise their potential as a low-cost, highly efficient material for this purpose.
-end-


University of Oxford

Related Solar Panels Articles:

NASA's solar dynamics observatory captured trio of solar flares April 2-3
The sun emitted a trio of mid-level solar flares on April 2-3, 2017.
Chemists create molecular 'leaf' that collects and stores solar power without solar panels
An international research team centered at Indiana University have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of 'carbon reduction.' The discovery, reported today in the Journal of the American Chemical Society, is a new milestone in the quest to recycle carbon dioxide in the Earth's atmosphere into carbon-neutral fuels and others materials.
Lotus stir-fry scores high in consumer panels
A report details potential demand and consumer preference for fresh lotus rhizomes and products such as lotus salad, baked lotus chips, and lotus stir-fry.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Web panels build customer loyalty
Customers who are asked to participate in retailer-sponsored Web panels feel valued by being invited to take part and tend to express their gratitude by buying more and across more different product categories.
This 'nanocavity' may improve ultrathin solar panels, video cameras and more
Recently, engineers placed a single layer of MoS2 molecules on top of a photonic structure called an optical nanocavity made of aluminum oxide and aluminum.
Under Pressure: New technique could make large, flexible solar panels more feasible
A new, high-pressure technique may allow the production of huge sheets of thin-film silicon semiconductors at low temperatures in simple reactors at a fraction of the size and cost of current technology.
Swept up in the solar wind
The sun's outer layer, the corona, constantly streams out charged particles called the solar wind.
Bringing low-cost solar panels to the market
In just one hour, the Earth receives more than enough energy from the sun to meet the world population's electricity needs in an entire year.
Shining more light on solar panels
A better understanding of how light reflects off different surfaces has improved action movies, videogames and now solar panels.

Related Solar Panels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...