Nav: Home

Genome: It's all about architecture

October 05, 2016

Many serious diseases such as malaria or AIDS present a major challenge for medicine because the causative pathogens use the same strategy although they are completely different: By camouflaging themselves they evade the immune system.

The same deception is used by Trypanosoma, the pathogen that causes the fatal human sleeping sickness. These African parasites are passed to the recipient by the byte of the tsetse fly to live in their host's blood. Their surface is covered with proteins, so-called antigens, which the immune system is actually capable of recognising and targeting. But the pathogen has several thousand different genes in its DNA that produce such antigens. The parasite only uses one antigen at a time and is capable of switching between them, making it all but impossible for the immune system to keep the pathogen at bay.

Research of antigen variation

This ability of pathogenic microorganisms and parasites to change the molecules at their surface is called antigen variation. In his new research project, Dr. Nicolai Siegel studies which processes are responsible for this at the genetic level. The European Research Council ERC has recently awarded him the coveted Starting Grant worth EUR 1.5 million which is presented to "research talents with proven research potential".

Born in 1978, Siegel is a biochemist who has managed one of the junior research groups of the University of Würzburg's Research Center for Infectious Diseases (ZINF) for four years. He and his team are investigating epigenetic mechanisms of gene regulation in Trypanosoma at the Institute for Molecular Infection Biology managed by Professor Jörg Vogel.

"Viruses, bacteria and certain parasites all face the same challenge when entering a living organism: They must somehow protect themselves against being attacked by the immune system," Nicolai Siegel explains. Although they are different, they have developed surprisingly similar defence strategies. Antigen variation is one of them. According to the Siegel, the ability to largely evade attacks from the immune system is one of the major challenges in the fight against infectious diseases. "If we can manage to influence this process, that would be a major breakthrough," the scientist further. It would help patients fight the infection more efficiently while facilitating the development of new vaccines.

Systematic analysis of the genome architecture

So far, however, the basic processes of antigen variation have not been researched sufficiently. To understand which antigens are used and when, Nicolai Siegel wants to sequence the parasite's genomic architecture. "Architecture" in this context literally refers to the three-dimensional folding of the DNA strands in the nucleus that can influence the activity of various genes. The results of a master's thesis were the starting point for his approach. In the meantime, Laura Müller has continued her work as a PhD in Nicolai Siegel's group together with Raúl Cosentino. Over the next five years, their goal is to conduct the first systematic analysis to determine the significance of the genome architecture for the varying expression of antigens - using Trypanosoma brucei, the causative agent of the sleeping sickness.

Siegel focuses on two state-of-the-art technologies to accomplish this. The first is high-throughput sequencing, also known as next-generation sequencing, which allows the entire genome of organisms to be sequenced in a matter of hours. The second method is CRISPR-Cas9, a technique which enables scientists to selectively modify individual DNA blocks in the genome with high precision. "Combining these two methods allows me to link antigen variation research with that of the genome architecture," Siegel says.

The impact of spatial layout

The scientist's interest in the three-dimensional structure of the genome is mainly due to one reason: "The spatial arrangement of the genome is crucial for the regulation of genes that are mutually exclusive," he explains. This also holds true for antigen variation. While the sequence of the individual blocks of DNA determines which proteins are produced, the structure of the DNA strand decides which sections are read and when. Simply put, genes that are simultaneously active are frequently clustered together in a certain region inside the nucleus. Other regions that are not to be read tend to be located at the nucleus' periphery.

Although novel techniques have enabled scientists to make numerous new findings in this domain, many question still need answering. Nicolai Siegel wants to use his ERC Grant to help solve them.

Prestigious grant with high prize money

The ERC Grants are the most prestigious European science awards and are presented each year by the European Research Council (ERC). The awards include a sum of money that allows the laureates to tackle complex projects.

This year, the ERC awards Starting Grants to 325 junior researchers in Europe. 61 of them are German scientists which is equivalent to around 19%. 14 of the new awardees are working at Bavarian universities.
-end-


University of Würzburg

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.