Nav: Home

Wireless 'data center on a chip' aims to cut energy use

October 05, 2016

PULLMAN, Wash. - A Washington State University research team has designed a tiny, wireless data center that someday could be as small as a hand-held device and dramatically reduce the energy needed to run such centers.

Their idea is a paradigm shift in the management of big data, said Partha Pratim Pande, a computer engineering professor in the School of Electrical Engineering and Computer Science.

Pande, who is collaborating with WSU professor Deuk Heo and a team from Carnegie Mellon University, presented the preliminary design for a data-center-on-a-chip this week at the Embedded Systems Week conference in Pittsburgh. The researchers recently received a $1.2 million National Science Foundation grant to further develop their transformative idea.

Sustainable computing

Data centers and high performance computing clusters are energy hogs, requiring enormous amounts of power and space. Often requiring air conditioners to cool their many processors, data centers consumed about 91 billion kilowatt-hours of electricity in the U.S. in 2013, which is equivalent to the output of 34 large, coal-fired power plants, according to the National Resources Defense Council.

Large data farms run by companies like Facebook have made significant energy efficiency improvements, but many data servers at small businesses around the country still consume significant resources. Sustainable computing has become of increasing interest to researchers, industry leaders and the public.

"We have reached our power limit already," said Pande. "To address our energy efficiency challenges, this architecture and technology need to be adopted by the community."

3D chip three times more efficient

Unlike portable devices that have gone wireless, data farms that provide instant availability to text messages, video downloads and more still use conventional metal wires on computer chips, which are wasteful for relatively long-range data exchange.

Most data centers are made up of several processing cores. One of their major performance limitations stems from the multi-hop nature of data exchange. That is, data has to move around several cores through wires, slowing down the processor and wasting energy.

Pande's group in recent years designed a wireless network on a computer chip. Similar to the way a cell phone works, the system includes a tiny, low-power transceiver, on-chip antennas and communication protocols that enable wireless shortcuts.

The new work expands these capabilities for a wireless data-center-on-a-chip. In particular, the researchers are moving from two-dimensional chips to a highly integrated, three-dimensional, wireless chip at the nano- and microscales that can move data more quickly and efficiently.

For instance, the researchers will be able to run big data applications on their wireless system three times more efficiently than the best data center servers.

Personal cloud computing possibilities

As part of their grant, the researchers will evaluate the wireless data center to increase energy efficiency while also maintaining fast, on-chip communications. The tiny chips, consisting of thousands of cores, could run data-intensive applications orders of magnitude more efficiently compared to existing platforms. Their design has the potential to achieve a comparable level of performance as a conventional data center using much less space and power.

It could someday enable personal cloud computing possibilities, said Pande, adding that the effort would require massive integration and significant innovation at multiple levels.

"This is a new direction in networked system design,'' he said. "This project is redefining the foundation of on-chip communication."
-end-


Washington State University

Related Big Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
'Charliecloud' simplifies Big Data supercomputing
At Los Alamos National Laboratory, home to more than 100 supercomputers since the dawn of the computing era, elegance and simplicity of programming are highly valued but not always achieved.
Advances in bayesian methods for big data
Big Data has imposed great challenges for machine learning. Bayesian methods provide a profound framework for characterizing the intrinsic uncertainty and performing probabilistic inference and decision-making.
Compiling big data in a human-centric way
When a group of researchers in the Undiagnosed Disease Network at Baylor College of Medicine realized they were spending days combing through databases searching for information regarding gene variants, they decided to do something about it.
Story of silver birch from genomic big data
Researchers at University of Helsinki, Finland and University at Buffalo, USA have analyzed the evolutionary history of silver birch using big data from the genomes of 150 birches.
Night lights, big data
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Environmental Defense Fund (EDF) have developed an online tool that incorporates 21 years of night-time lights data to understand and compare changes in human activities in countries around the world.
Big data approach to predict protein structure
Nothing works without proteins in the body, they are the molecular all-rounders in our cells.
Is your big data messy? We're making an app for that
Vizier, software under development by a University at Buffalo-led research team, aims to proactively catch big data errors.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
Using Big Data to understand immune system responses
An enzyme found in many bacteria, including the bacterium that gives us strep throat, has given mankind a cheap and effective tool with which to edit our own genes.

Related Big Data Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".