Nav: Home

UQ study shines a light to understand the body's balance system

October 05, 2017

Finding out what's happening in the brains of people with balance disorders, such as vertigo, might be one step closer following new research on the vestibular system, which controls balance and movement.

An interdisciplinary University of Queensland team of optical physicists and biologists has found a novel way, using optical tweezers, or focused beams of light, to understand the vestibular system while animals are still, not moving.

School of Biomedical Sciences' Associate Professor Ethan Scott said the vestibular system, which detects gravity and motion, was crucial to survival, but the nerve circuits processing vestibular information were not completely understood.

School of Mathematics and Physics' Professor Halina Rubinsztein-Dunlop said this new research was significant because it demonstrated that optical trapping was sufficiently powerful and precise to move large objects, it and set the stage for functional mapping of vestibular processing.

"It opens the door to using other techniques that can help us understand the neural circuits in the brain that mediate vestibular perception and may also ultimately benefit people with vestibular disorders such as dizziness, vertigo and imbalance", said Associate Professor Scott.

"The vestibular system, found in the inner ear in most mammals, had always been hard to study, because it was active in response to movement."

"Movement makes it difficult to record using neurons in the brain, and this has complicated past studies of the vestibular system," he said.

"We needed a way to activate the vestibular system without the animal moving."

The solution came in the form of optical physics and a technique called optical trapping, or using highly focused laser beams to physically hold and move microscopic objects, similar to tweezers.

"By focusing a laser at the edge of an object, we can apply physical forces to it," said Professor Halina Rubinsztein-Dunlop of the School of Mathematics and Physics at UQ.

Dr Itia Favre-Bulle, a postgraduate at the time of the study and now a postdoc on the continuation of the project, working with the Scott and Rubinsztein-Dunlop teams, brought this theory to practice using zebrafish as a model.

Dr Favre-Bulle targeted an infrared laser toward the otoliths, or ear stones, of larval zebrafish, thus placing forces on them similar to the forces that would result from actual movement.

This resulted in behavioural responses like those that zebrafish larvae display when undergoing real-world vestibular stimuli, like acceleration or rolling, even though the animals were still.

"From a technical standpoint, this is exciting because these are the largest and most optically complex objects that have been manipulated with optical trapping, and the technique was effective even though the targets were deep within a living animal," Dr Favre-Bulle said.
-end-
The study, entitled "Optical trapping of otoliths drives vestibular behaviours in larval zebrafish", appears in Nature Communications (doi: 10.1038/s41467-017-00713-2).

University of Queensland

Related Zebrafish Articles:

Researchers listen to zebrafish to understand human hearing loss
Can a fish with a malformed jaw tell us something about hearing loss in mice and humans?
3-D models reveal hidden details of zebrafish behavior
In the first experiments of their kind, researchers found significant discrepancies in data generated when tracking the social behavior of zebrafish in two dimensions as opposed to 3-D.
Painkillers relieve zebrafish larvae discomfort
Uncomfortable with the increasing use of adult fish in pain research, Dr.
Researchers watch blood vessels develop in whole Zebrafish embryos
For the first time, researchers have followed the development of blood vessels in zebrafish embryos without using any labels or contrast agents, which may disturb the biological processes under study.
Friction shapes zebrafish embryos
The biochemical signals that give an embryo its shape have been studied extensively.
More Zebrafish News and Zebrafish Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.