Nav: Home

Carbon feedback from forest soils will accelerate global warming, 26-year study projects

October 05, 2017

WOODS HOLE, Mass. -- After 26 years, the world's longest-running experiment to discover how warming temperatures affect forest soils has revealed a surprising, cyclical response: Soil warming stimulates periods of abundant carbon release from the soil to the atmosphere alternating with periods of no detectable loss in soil carbon stores. Overall, the results indicate that in a warming world, a self-reinforcing and perhaps uncontrollable carbon feedback will occur between forest soils and the climate system, adding to the build-up of atmospheric carbon dioxide caused by burning fossil fuels and accelerating global warming. The study, led by Jerry Melillo, Distinguished Scientist at the Marine Biological Laboratory (MBL), appears in the October 6 issue of Science.

Melillo and colleagues began this pioneering experiment in 1991 in a deciduous forest stand at the Harvard Forest in Massachusetts. They buried electrical cables in a set of plots and heated the soil 5° C above the ambient temperature of control plots. Over the course of the 26-year experiment (which still continues), the warmed plots lost 17 percent of the carbon that had been stored in organic matter in the top 60 centimeters of soil.

"To put this in context," Melillo says, "each year, mostly from fossil fuel burning, we are releasing about 10 billion metric tons of carbon into the atmosphere. That's what's causing the increase in atmospheric carbon dioxide concentration and global warming. The world's soils contain about 3,500 billion metric tons of carbon. If a significant amount of that soil carbon is added to the atmosphere, due to microbial activity in warmer soils, that will accelerate the global warming process. And once this self-reinforcing feedback begins, there is no easy way to turn it off. There is no switch to flip."

Over the course of the experiment, Melillo's team observed fluctuations in the rate of soil carbon emission from the heated plots, indicating cycles in the capacity of soil microbes to degrade organic matter and release carbon. Phase I (1991 to 2000) was a period of substantial soil carbon loss that was rapid at first, then slowed to near zero. In Phase II (2001-2007), there was no difference in carbon emissions between the warmed and the control plots. During that time, the soil microbial community in the warmed plots was undergoing reorganization that led to changes in the community's structure and function. In Phase III (2008-2013), carbon release from heated plots again exceeded that from control plots. This coincided with a continued shift in the soil microbial community. Microbes that can degrade more recalcitrant soil organic matter, such as lignin, became more dominant, as shown by genomic and extracellular enzyme analyses. In Phase IV (2014 to current), carbon emissions from the heated plots have again dropped, suggesting that another reorganization of the soil microbial community could be underway. If the cyclical pattern continues, Phase IV will eventually transition to another phase of higher carbon loss from the heated plots.

"This work emphasizes the value of long-term ecological studies that are the hallmark of research at the MBL's Ecosystems Center," says David Mark Welch, MBL's Director of Research. "These large field studies, combined with modeling and an increasingly sophisticated understanding of the role of microbial communities in ecosystem dynamics, provide new insight to the challenges posed by climate change."

"The future is a warmer future. How much warmer is the issue," Melillo says. "In terms of carbon emissions from fossil fuels, we could control that. We could shut down coal-fired power plants, for example. But if the microbes in all landscapes respond to warming in the same way as we've observed in mid-latitude forest soils, this self-reinforcing feedback phenomenon will go on for a while and we are not going to be able to turn those microbes off. Of special concern is the big pool of easily decomposed carbon that is frozen in Artic soils. As those soils thaw out, this feedback phenomenon would be an important component of the climate system, with climate change feeding itself in a warming world."
-end-
Collaborators in this study include S.D. Frey, M.A. Knorr, and A.S. Grandy of the University of New Hampshire's Department of Natural Resources and the Environment; K.M. DeAngelis of the University of Massachusetts, Amherst's Department of Microbiology; W.J. Werner and M.J. Bernard of the Marine Biological Laboratory; F.P. Bowles of Research Designs in Lyme, N.H.; and G. Pold of the University of Massachusetts, Amherst, Department of Organismic and Evolutionary Biology.

Citation:

Melillo, J.M. et al (2017) Long-Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science DOI:

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Marine Biological Laboratory

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.