Nanoscale pillars as a building block for future information technology

October 05, 2018

Researchers from Linköping University and the Royal Institute of Technology in Sweden propose a new device concept that can efficiently transfer the information carried by electron spin to light at room temperature - a stepping stone towards future information technology. They present their approach in an article in Nature Communications.

In today's information technology, light and electron charge are the main media for information processing and transfer. In the search for information technology that is even faster, smaller and more energy-efficient, scientists around the globe are exploring another property of electrons - their spin. Electronics that exploit both the spin and the charge of the electron are called "spintronics".

Just as the Earth spins around its own axis, an electron spins around its own axis, either clockwise or counterclockwise. The handedness of the rotation is referred to as spin-up and spin-down states. In spintronics, the two states represent the binary bits of 0 and 1 and thus carry information. The information encoded by these spin states can in principle be converted by a light-emitting device into light, which then carries the information over a long distance through optic fibres. Such transfer of quantum information opens the possibility of future information technology that exploits both electron spin and light, and the interaction between them, a technology known as "opto-spintronics".

The information transfer in opto-spintronics is based on the principle that the spin state of the electron determines the properties of the emitted light. More specifically, it is chiral light, in which the electric field rotates either clockwise or counter-clockwise when seen in the direction of travel of the light. The rotation of the electric field is determined by the direction of spin of the electron. But there is a catch.

"The main problem is that electrons easily lose their spin orientations when the temperature rises. A key element for future spin-light applications is efficient quantum information transfer at room temperature, but at room temperature the electron spin orientation is nearly randomized. This means that the information encoded in the electron spin is lost or too vague to be reliably converted to its distinct chiral light", says Weimin Chen at the Department of Physics, Chemistry and Biology, IFM, at Linköping University.

Now, researchers from Linköping University and the Royal Institute of Technology have devised an efficient spin-light interface.

"This interface can not only maintain and even enhance the electron spin signals at room temperature. It can also convert these spin signals to corresponding chiral light signals travelling in a desired direction", says Weimin Chen.

The key element of the device is extremely small disks of gallium nitrogen arsenide, GaNAs. The disks are only a couple of nanometres high and stacked on top of each other with a thin layer of gallium arsenide (GaAs) between to form chimney-shaped nanopillars. For comparison, the diameter of a human hair is about a thousand times larger than the diameter of the nanopillars.

The unique ability of the proposed device to enhance spin signals is due to minimal defects introduced into the material by the researchers. Fewer than one out of a million gallium atoms are displaced from their designated lattice sites in the material. The resulting defects in the material act as efficient spin filters that can drain electrons with an unwanted spin orientation and preserve those with the desired spin orientation.

"An important advantage of the nanopillar design is that light can be guided easily and more efficiently coupled in and out", says Shula Chen, first author of the article.

The researchers hope that their proposed device will inspire new designs of spin-light interfaces, which hold great promise for future opto-spintronics applications.
-end-
The research has been supported by grants from the Swedish Research Council, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University, and the Swedish Energy Agency.

For more information, please contact: Weimin Chen, Professor, weimin.chen@liu.se, +46 13 281795

The article: "Room-temperature polarized spin-photon interface based on a semiconductor nanodisk-in-nanopillar structure driven by few defects", Shula Chen, Yuqing Huang, Dennis Visser, Srinivasan Anand, Irina A. Buyanova, & Weimin M. Chen. Nature Communications 9, 3575 (2018), published online September 3, doi: 10.1038/s41467-018-06035-1

Linköping University

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.