Nanoplatform developed with three molecular imaging modalities for tumor diagnosis

October 05, 2018

Researchers at the Complutense University of Madrid (UCM) have developed a hybrid nanoplatform that locates tumours using three different types of contrast simultaneously to facilitate multimodal molecular medical imaging: magnetic resonance imaging (MRI), computed tomography (CT) and fluorescence optical imaging (OI).

The results of this study, led by the UCM Life Sciences Nanobiotechnology research team directed by Marco Filice and published in ACS Applied Materials & Interfaces, represent a major advance in medical diagnosis since just one session using a single contrast medium yields more precise, specific results with higher resolution, sensitivity and capacity to penetrate tissues.

"No single molecular imaging modality provides a perfect diagnosis. Our nanoplatform is designed to enable multimodal molecular imaging, thus overcoming the intrinsic limitations of each single image modality while maximising their advantages", noted Marco Filice, a researcher in the Department of Chemistry and Pharmaceutical Sciences at the Complutense University of Madrid and the director of the study.

The platform, which has been tested on mice, targets solid cancers such as sarcomas. However, "due to its flexibility, the proposed nanoplatform can be modified, and with a suitable design of recognition element siting, it will be possible to expand detection to more types of cancer", Filice continued.

Besides the Complutense University, the present research involved the Carlos III Foundation National Centre for Cardiovascular Research, the CIBER of Respiratory Diseases, the Centre for Cooperative Research in Biomaterials and the Ikerbasque Basque Foundation for Science.

Two faces of iron and gold

Named after the Roman god Janus, usually depicted as having two faces, these nanoparticles also "have two opposing faces, one of iron oxide embedded in a silica matrix that serves as a contrast medium for MRI and another of gold for CT'", explained Alfredo Sánchez, a researcher in the UCM Department of Analytical Chemistry and the first author of the study.

In addition, a molecular probe sited in a specific manner in the golden area permits fluorescence optical imaging while a peptide selective for hyperexpressed receptors in tumours (RGD sequence) and sited on the silica surface enveloping the iron oxide nanoparticles identifies the tumour and makes it possible to direct and transport the nanoplatform to its target.

Once the research team had synthesised the nanoparticles and determined their characteristics and toxicity, they then tested them in mouse models reared to present a fibrosarcoma in the right leg. The nanoparticle was injected in the tail, and "excellent imaging results were obtained for each modality tested", reported Filice.

Although there is still much to do before these experiments can be applied to humans, this research shows that personalised treatment "is closer than ever to becoming a reality, thanks to nanotechnology and biotechnology", Filice concluded.
-end-


Universidad Complutense de Madrid

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.