Novel use of NMR sheds light on easy-to-make electropolymerized catalysts

October 05, 2018

WASHINGTON, D.C., October 5, 2018 -- In the world of catalytic reactions, polymers created through electropolymerization are attracting renewed attention. A group of Chinese researchers recently provided the first detailed characterization of the electrochemical properties of polyaniline and polyaspartic acid (PASP) thin films. In AIP Advances, from AIP Publishing, the team used a wide range of tests to characterize the polymers, especially their capacity for catalyzing the oxidation of popularly used materials, hydroquinone and catechol.

This new paper marks one of the first pairings of standard electrochemical tests with nuclear magnetic resonance (NMR) analysis in such an application. "Because these materials can be easily prepared in an electric field and are cost-effective and environmentally friendly, we think they have the potential to be widely used," said Shuo-Hui Cao, an author on the paper.

Although PASP has shown excellent electrocatalytic responses to biological molecules, newer areas of inquiry have explored the material's ability to lower the oxidational potential in oxidation-reduction reactions. Reducing the oxidation potential is key for finding further uses for two materials used extensively as raw materials and synthetic intermediates in pharmaceuticals, hydroquinone and catechol.

Conductive polymers, like polyaniline, have attracted attention for their high conductivity and low cost. To better understand these materials, Cao and his colleagues tested how well PASP and polyaniline were able to oxidize hydroquinone and catechol using several standard electrochemical techniques, including attenuated total reflection Fournier transform infrared spectrophotometry, cyclic voltammetry and electrochemical impedance spectroscopy.

Using proton-based NMR, they monitored the progress of each reaction by directly measuring how quickly reactants were used and products were created. Cao said that their work using NMR analysis on catechol looks to fill a gap they found in the literature.

"The NMR technique allows us to find out more about their molecular structure and better compare the catalysts' characteristics quantitatively," Cao said.

The group discovered that the polymer-modified electrodes both improved conductivity. PASP's catalytic activity of both hydroquinone and catechol was found to outpace that of polyaniline by a factor of two. Later NMR studies confirmed that electrically induced molecular transformations allowed PASP to serve as a better catalyst.

The findings led the researchers to postulate that polyaspartic acid electropolymerized thin films might be more suitable for use as catalysts over polyaniline in many situations.

Cao said he hopes to further develop NMR techniques that pair with electrochemical testing. So far, the group has used a type of NMR that incorporates one dimension of frequency analysis. In addition to being able to examine new material features, using two-dimensional techniques will allow the group to extend their work to more complicated molecules.
-end-
The article, "The electrochemical oxidation of hydroquinone and catechol through polyaniline and poly(aspartic acid) thin films: A comparative study," is authored by Ye Feng, Chengsen Zhao, Shuo-Hui Cao, Shuhui Cai, Huijun Sun and Zhong Chen. The article appeared in AIP Advances Sept. 11, 2018 (DOI: 10.1116/1.5042135) and can be accessed at http://aip.scitation.org/doi/full/10.1116/1.5042135.

ABOUT THE JOURNAL

AIP Advances is an open access journal publishing in all areas of physical sciences--applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences. See https://aip.scitation.org/adv/.

American Institute of Physics

Related Polymers Articles from Brightsurf:

Seeking the most effective polymers for personal protective equipment
Personal protective equipment, like face masks and gowns, is generally made of polymers.

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.